Cargando…
Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms
In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposite...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423528/ https://www.ncbi.nlm.nih.gov/pubmed/25973143 http://dx.doi.org/10.1016/j.csbj.2015.04.001 |
_version_ | 1782370230224289792 |
---|---|
author | Ortegon, Patricia Poot-Hernández, Augusto C. Perez-Rueda, Ernesto Rodriguez-Vazquez, Katya |
author_facet | Ortegon, Patricia Poot-Hernández, Augusto C. Perez-Rueda, Ernesto Rodriguez-Vazquez, Katya |
author_sort | Ortegon, Patricia |
collection | PubMed |
description | In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case. |
format | Online Article Text |
id | pubmed-4423528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-44235282015-05-13 Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms Ortegon, Patricia Poot-Hernández, Augusto C. Perez-Rueda, Ernesto Rodriguez-Vazquez, Katya Comput Struct Biotechnol J Article In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case. Research Network of Computational and Structural Biotechnology 2015-04-09 /pmc/articles/PMC4423528/ /pubmed/25973143 http://dx.doi.org/10.1016/j.csbj.2015.04.001 Text en © 2015 Ortegon et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural Biotechnology. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ortegon, Patricia Poot-Hernández, Augusto C. Perez-Rueda, Ernesto Rodriguez-Vazquez, Katya Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms |
title | Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms |
title_full | Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms |
title_fullStr | Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms |
title_full_unstemmed | Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms |
title_short | Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms |
title_sort | comparison of metabolic pathways in escherichia coli by using genetic algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423528/ https://www.ncbi.nlm.nih.gov/pubmed/25973143 http://dx.doi.org/10.1016/j.csbj.2015.04.001 |
work_keys_str_mv | AT ortegonpatricia comparisonofmetabolicpathwaysinescherichiacolibyusinggeneticalgorithms AT poothernandezaugustoc comparisonofmetabolicpathwaysinescherichiacolibyusinggeneticalgorithms AT perezruedaernesto comparisonofmetabolicpathwaysinescherichiacolibyusinggeneticalgorithms AT rodriguezvazquezkatya comparisonofmetabolicpathwaysinescherichiacolibyusinggeneticalgorithms |