Cargando…

Severe respiratory insufficiency during pandemic H1N1 infection: prognostic value and therapeutic potential of pulmonary surfactant protein A

For almost two decades, studies have shown collectins to be critical for effective antimicrobial defense of the airways. Members of this protein family, which includes surfactant proteins (SP)-A and D, provide broad-spectrum protection through promoting the aggregation and clearance of pathogens. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Tolosa, Monica Fern, Palaniyar, Nades
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423634/
https://www.ncbi.nlm.nih.gov/pubmed/25184962
http://dx.doi.org/10.1186/s13054-014-0479-z
Descripción
Sumario:For almost two decades, studies have shown collectins to be critical for effective antimicrobial defense of the airways. Members of this protein family, which includes surfactant proteins (SP)-A and D, provide broad-spectrum protection through promoting the aggregation and clearance of pathogens. Interestingly, these proteins may also modulate the immune response, and growing evidence has shown collectins to be protective against several markers of inflammation and injury. In a recent study by Herrera-Ramos and colleagues, genetic variants of collectins were examined in Spanish patients with the pandemic 2009 H1N1 influenza A virus. Comparing genotypes for measures of poor lung function, inflammation, and admission to intensive care, these authors identified three variants of the SP-A gene SFTPA2 that positively correlated with flu severity. Remarkably, they also found the haplotype 1A(1) of SFTPA2 to be protective against these indicators, suggesting that targeted therapy with a recombinant form of SP-A2 may improve patient outcome. Although further work is required to confirm the specificity and efficacy of SP-A in therapeutic H1N1 protection, this study is one of the first to suggest a clinical role for SP-A in pandemic influenza.