Cargando…
Accounting for Genetic Architecture Improves Sequence Based Genomic Prediction for a Drosophila Fitness Trait
The ability to predict quantitative trait phenotypes from molecular polymorphism data will revolutionize evolutionary biology, medicine and human biology, and animal and plant breeding. Efforts to map quantitative trait loci have yielded novel insights into the biology of quantitative traits, but th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423967/ https://www.ncbi.nlm.nih.gov/pubmed/25950439 http://dx.doi.org/10.1371/journal.pone.0126880 |
_version_ | 1782370286637678592 |
---|---|
author | Ober, Ulrike Huang, Wen Magwire, Michael Schlather, Martin Simianer, Henner Mackay, Trudy F. C. |
author_facet | Ober, Ulrike Huang, Wen Magwire, Michael Schlather, Martin Simianer, Henner Mackay, Trudy F. C. |
author_sort | Ober, Ulrike |
collection | PubMed |
description | The ability to predict quantitative trait phenotypes from molecular polymorphism data will revolutionize evolutionary biology, medicine and human biology, and animal and plant breeding. Efforts to map quantitative trait loci have yielded novel insights into the biology of quantitative traits, but the combination of individually significant quantitative trait loci typically has low predictive ability. Utilizing all segregating variants can give good predictive ability in plant and animal breeding populations, but gives little insight into trait biology. Here, we used the Drosophila Genetic Reference Panel to perform both a genome wide association analysis and genomic prediction for the fitness-related trait chill coma recovery time. We found substantial total genetic variation for chill coma recovery time, with a genetic architecture that differs between males and females, a small number of molecular variants with large main effects, and evidence for epistasis. Although the top additive variants explained 36% (17%) of the genetic variance among lines in females (males), the predictive ability using genomic best linear unbiased prediction and a relationship matrix using all common segregating variants was very low for females and zero for males. We hypothesized that the low predictive ability was due to the mismatch between the infinitesimal genetic architecture assumed by the genomic best linear unbiased prediction model and the true genetic architecture of chill coma recovery time. Indeed, we found that the predictive ability of the genomic best linear unbiased prediction model is markedly improved when we combine quantitative trait locus mapping with genomic prediction by only including the top variants associated with main and epistatic effects in the relationship matrix. This trait-associated prediction approach has the advantage that it yields biologically interpretable prediction models. |
format | Online Article Text |
id | pubmed-4423967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44239672015-05-13 Accounting for Genetic Architecture Improves Sequence Based Genomic Prediction for a Drosophila Fitness Trait Ober, Ulrike Huang, Wen Magwire, Michael Schlather, Martin Simianer, Henner Mackay, Trudy F. C. PLoS One Research Article The ability to predict quantitative trait phenotypes from molecular polymorphism data will revolutionize evolutionary biology, medicine and human biology, and animal and plant breeding. Efforts to map quantitative trait loci have yielded novel insights into the biology of quantitative traits, but the combination of individually significant quantitative trait loci typically has low predictive ability. Utilizing all segregating variants can give good predictive ability in plant and animal breeding populations, but gives little insight into trait biology. Here, we used the Drosophila Genetic Reference Panel to perform both a genome wide association analysis and genomic prediction for the fitness-related trait chill coma recovery time. We found substantial total genetic variation for chill coma recovery time, with a genetic architecture that differs between males and females, a small number of molecular variants with large main effects, and evidence for epistasis. Although the top additive variants explained 36% (17%) of the genetic variance among lines in females (males), the predictive ability using genomic best linear unbiased prediction and a relationship matrix using all common segregating variants was very low for females and zero for males. We hypothesized that the low predictive ability was due to the mismatch between the infinitesimal genetic architecture assumed by the genomic best linear unbiased prediction model and the true genetic architecture of chill coma recovery time. Indeed, we found that the predictive ability of the genomic best linear unbiased prediction model is markedly improved when we combine quantitative trait locus mapping with genomic prediction by only including the top variants associated with main and epistatic effects in the relationship matrix. This trait-associated prediction approach has the advantage that it yields biologically interpretable prediction models. Public Library of Science 2015-05-07 /pmc/articles/PMC4423967/ /pubmed/25950439 http://dx.doi.org/10.1371/journal.pone.0126880 Text en © 2015 Ober et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ober, Ulrike Huang, Wen Magwire, Michael Schlather, Martin Simianer, Henner Mackay, Trudy F. C. Accounting for Genetic Architecture Improves Sequence Based Genomic Prediction for a Drosophila Fitness Trait |
title | Accounting for Genetic Architecture Improves Sequence Based Genomic Prediction for a Drosophila Fitness Trait |
title_full | Accounting for Genetic Architecture Improves Sequence Based Genomic Prediction for a Drosophila Fitness Trait |
title_fullStr | Accounting for Genetic Architecture Improves Sequence Based Genomic Prediction for a Drosophila Fitness Trait |
title_full_unstemmed | Accounting for Genetic Architecture Improves Sequence Based Genomic Prediction for a Drosophila Fitness Trait |
title_short | Accounting for Genetic Architecture Improves Sequence Based Genomic Prediction for a Drosophila Fitness Trait |
title_sort | accounting for genetic architecture improves sequence based genomic prediction for a drosophila fitness trait |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423967/ https://www.ncbi.nlm.nih.gov/pubmed/25950439 http://dx.doi.org/10.1371/journal.pone.0126880 |
work_keys_str_mv | AT oberulrike accountingforgeneticarchitectureimprovessequencebasedgenomicpredictionforadrosophilafitnesstrait AT huangwen accountingforgeneticarchitectureimprovessequencebasedgenomicpredictionforadrosophilafitnesstrait AT magwiremichael accountingforgeneticarchitectureimprovessequencebasedgenomicpredictionforadrosophilafitnesstrait AT schlathermartin accountingforgeneticarchitectureimprovessequencebasedgenomicpredictionforadrosophilafitnesstrait AT simianerhenner accountingforgeneticarchitectureimprovessequencebasedgenomicpredictionforadrosophilafitnesstrait AT mackaytrudyfc accountingforgeneticarchitectureimprovessequencebasedgenomicpredictionforadrosophilafitnesstrait |