Cargando…
Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis
BACKGROUND: Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disorder with its primary insult on the skeletal muscle. Severe muscle wasting, chronic inflammation and fibrosis characterize dystrophic muscle. Here we identify dysregulated pathways in DMD utilizing a co-expression network app...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424514/ https://www.ncbi.nlm.nih.gov/pubmed/25935398 http://dx.doi.org/10.1186/s13104-015-1141-9 |
_version_ | 1782370339894853632 |
---|---|
author | Mukund, Kavitha Subramaniam, Shankar |
author_facet | Mukund, Kavitha Subramaniam, Shankar |
author_sort | Mukund, Kavitha |
collection | PubMed |
description | BACKGROUND: Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disorder with its primary insult on the skeletal muscle. Severe muscle wasting, chronic inflammation and fibrosis characterize dystrophic muscle. Here we identify dysregulated pathways in DMD utilizing a co-expression network approach as described in Weighted Gene Co-expression Network Analysis (WGCNA). Specifically, we utilize WGCNA’s “preservation” statistics to identify gene modules that exhibit a weak conservation of network topology within healthy and dystrophic networks. Preservation statistics rank modules based on their topological metrics such as node density, connectivity and separability between networks. METHODS: Raw data for DMD was downloaded from Gene Expression Omnibus (GSE6011) and suitably preprocessed. Co-expression networks for each condition (healthy and dystrophic) were generated using the WGCNA library in R. Preservation of healthy network edges was evaluated with respect to dystrophic muscle and vice versa using WGCNA. Highly exclusive gene pairs for each of the low preserved modules within both networks were also determined using a specificity measure. RESULTS: A total of 11 and 10 co-expressed modules were identified in the networks generated from 13 healthy and 23 dystrophic samples respectively. 5 out of the 11, and 4 out of the 10 modules were identified as exhibiting none-to-weak preservation. Functional enrichment analysis identified that these weakly preserved modules were highly relevant to the condition under study. For instance, weakly preserved dystrophic module D2 exhibited the highest fraction of genes exclusive to DMD. The highly specific gene pairs identified within these modules were enriched for genes activated in response to wounding and affect the extracellular matrix including several markers such as SPP1, MMP9 and ITGB2. CONCLUSION: The proposed approach allowed us to identify clusters of genes that are non-randomly associated with the disease. Furthermore, highly specific gene pairs pointed to interactions between known markers of disease and identification of putative markers likely associated with disease. The analysis also helped identify putative novel interactions associated with the progression of DMD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-015-1141-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4424514 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-44245142015-05-09 Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis Mukund, Kavitha Subramaniam, Shankar BMC Res Notes Research Article BACKGROUND: Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disorder with its primary insult on the skeletal muscle. Severe muscle wasting, chronic inflammation and fibrosis characterize dystrophic muscle. Here we identify dysregulated pathways in DMD utilizing a co-expression network approach as described in Weighted Gene Co-expression Network Analysis (WGCNA). Specifically, we utilize WGCNA’s “preservation” statistics to identify gene modules that exhibit a weak conservation of network topology within healthy and dystrophic networks. Preservation statistics rank modules based on their topological metrics such as node density, connectivity and separability between networks. METHODS: Raw data for DMD was downloaded from Gene Expression Omnibus (GSE6011) and suitably preprocessed. Co-expression networks for each condition (healthy and dystrophic) were generated using the WGCNA library in R. Preservation of healthy network edges was evaluated with respect to dystrophic muscle and vice versa using WGCNA. Highly exclusive gene pairs for each of the low preserved modules within both networks were also determined using a specificity measure. RESULTS: A total of 11 and 10 co-expressed modules were identified in the networks generated from 13 healthy and 23 dystrophic samples respectively. 5 out of the 11, and 4 out of the 10 modules were identified as exhibiting none-to-weak preservation. Functional enrichment analysis identified that these weakly preserved modules were highly relevant to the condition under study. For instance, weakly preserved dystrophic module D2 exhibited the highest fraction of genes exclusive to DMD. The highly specific gene pairs identified within these modules were enriched for genes activated in response to wounding and affect the extracellular matrix including several markers such as SPP1, MMP9 and ITGB2. CONCLUSION: The proposed approach allowed us to identify clusters of genes that are non-randomly associated with the disease. Furthermore, highly specific gene pairs pointed to interactions between known markers of disease and identification of putative markers likely associated with disease. The analysis also helped identify putative novel interactions associated with the progression of DMD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-015-1141-9) contains supplementary material, which is available to authorized users. BioMed Central 2015-05-03 /pmc/articles/PMC4424514/ /pubmed/25935398 http://dx.doi.org/10.1186/s13104-015-1141-9 Text en © Mukund and Subramaniam; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Mukund, Kavitha Subramaniam, Shankar Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis |
title | Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis |
title_full | Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis |
title_fullStr | Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis |
title_full_unstemmed | Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis |
title_short | Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis |
title_sort | dysregulated mechanisms underlying duchenne muscular dystrophy from co-expression network preservation analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424514/ https://www.ncbi.nlm.nih.gov/pubmed/25935398 http://dx.doi.org/10.1186/s13104-015-1141-9 |
work_keys_str_mv | AT mukundkavitha dysregulatedmechanismsunderlyingduchennemusculardystrophyfromcoexpressionnetworkpreservationanalysis AT subramaniamshankar dysregulatedmechanismsunderlyingduchennemusculardystrophyfromcoexpressionnetworkpreservationanalysis |