Cargando…
Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet
BACKGROUND: Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424531/ https://www.ncbi.nlm.nih.gov/pubmed/25960774 http://dx.doi.org/10.1186/1758-5996-6-130 |
_version_ | 1782370343780876288 |
---|---|
author | Auberval, Nathalie Dal, Stéphanie Bietiger, William Pinget, Michel Jeandidier, Nathalie Maillard-Pedracini, Elisa Schini-Kerth, Valérie Sigrist, Séverine |
author_facet | Auberval, Nathalie Dal, Stéphanie Bietiger, William Pinget, Michel Jeandidier, Nathalie Maillard-Pedracini, Elisa Schini-Kerth, Valérie Sigrist, Séverine |
author_sort | Auberval, Nathalie |
collection | PubMed |
description | BACKGROUND: Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. MATERIALS AND METHODS: Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. RESULTS: After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. CONCLUSION: This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome. |
format | Online Article Text |
id | pubmed-4424531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-44245312015-05-09 Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet Auberval, Nathalie Dal, Stéphanie Bietiger, William Pinget, Michel Jeandidier, Nathalie Maillard-Pedracini, Elisa Schini-Kerth, Valérie Sigrist, Séverine Diabetol Metab Syndr Research BACKGROUND: Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. MATERIALS AND METHODS: Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. RESULTS: After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. CONCLUSION: This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome. BioMed Central 2014-11-28 /pmc/articles/PMC4424531/ /pubmed/25960774 http://dx.doi.org/10.1186/1758-5996-6-130 Text en © Auberval et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Auberval, Nathalie Dal, Stéphanie Bietiger, William Pinget, Michel Jeandidier, Nathalie Maillard-Pedracini, Elisa Schini-Kerth, Valérie Sigrist, Séverine Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet |
title | Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet |
title_full | Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet |
title_fullStr | Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet |
title_full_unstemmed | Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet |
title_short | Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet |
title_sort | metabolic and oxidative stress markers in wistar rats after 2 months on a high-fat diet |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424531/ https://www.ncbi.nlm.nih.gov/pubmed/25960774 http://dx.doi.org/10.1186/1758-5996-6-130 |
work_keys_str_mv | AT aubervalnathalie metabolicandoxidativestressmarkersinwistarratsafter2monthsonahighfatdiet AT dalstephanie metabolicandoxidativestressmarkersinwistarratsafter2monthsonahighfatdiet AT bietigerwilliam metabolicandoxidativestressmarkersinwistarratsafter2monthsonahighfatdiet AT pingetmichel metabolicandoxidativestressmarkersinwistarratsafter2monthsonahighfatdiet AT jeandidiernathalie metabolicandoxidativestressmarkersinwistarratsafter2monthsonahighfatdiet AT maillardpedracinielisa metabolicandoxidativestressmarkersinwistarratsafter2monthsonahighfatdiet AT schinikerthvalerie metabolicandoxidativestressmarkersinwistarratsafter2monthsonahighfatdiet AT sigristseverine metabolicandoxidativestressmarkersinwistarratsafter2monthsonahighfatdiet |