Cargando…
Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM
Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiti...
Autores principales: | Wang, Yanlu, Li, Tie-Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424860/ https://www.ncbi.nlm.nih.gov/pubmed/26005413 http://dx.doi.org/10.3389/fnhum.2015.00259 |
Ejemplares similares
-
Hand classification of fMRI ICA noise components
por: Griffanti, Ludovica, et al.
Publicado: (2017) -
Automated Classification of Resting-State fMRI ICA Components Using a Deep Siamese Network
por: Chou, Yiyu, et al.
Publicado: (2022) -
Analysis of Whole-Brain Resting-State fMRI Data Using Hierarchical Clustering Approach
por: Wang, Yanlu, et al.
Publicado: (2013) -
Non-linear ICA Analysis of Resting-State fMRI in Mild Cognitive Impairment
por: Bi, Xia-an, et al.
Publicado: (2018) -
Resting-state fMRI study of acute migraine treatment with kinetic oscillation stimulation in nasal cavity
por: Li, Tie-Qiang, et al.
Publicado: (2016)