Cargando…

Using a Novel MicroRNA Delivery System to Inhibit Osteoclastogenesis

Previously, we developed a novel microRNA (miRNA) delivery system based on bacteriophage MS2 virus-like particles (MS2 VLPs). In this current study, we used this system to transport miR-146a into human peripheral blood mononuclear cells (PBMCs), and demonstrated the inhibition of osteoclastogenesis...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Yanlan, Jia, Tingting, Pan, Yang, Gou, Hongna, Li, Yulong, Sun, Yu, Zhang, Rui, Zhang, Kuo, Lin, Guigao, Xie, Jiehong, Li, Jinming, Wang, Lunan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425084/
https://www.ncbi.nlm.nih.gov/pubmed/25874760
http://dx.doi.org/10.3390/ijms16048337
Descripción
Sumario:Previously, we developed a novel microRNA (miRNA) delivery system based on bacteriophage MS2 virus-like particles (MS2 VLPs). In this current study, we used this system to transport miR-146a into human peripheral blood mononuclear cells (PBMCs), and demonstrated the inhibition of osteoclastogenesis in precursors. Two cytokines, receptor activator of NF-κB ligand (RANKL), and macrophage-colony stimulating factor (M-CSF) were used to induce osteoclastogenesis. MS2 VLPs were transfected into PBMCs. qRT-PCR was applied to measure expression levels of miR-146a and osteoclast (OC)-specific genes. Western blot (WB) was conducted to evaluate miR-146a downstream target proteins: epidermal growth factor receptor (EGFR) and tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6). The formation and activity of OCs were assessed by cytochemical staining and bone resorption assay, respectively. In PBMCs treated with MS2-miR146a VLPs, qRT-PCR assays showed increased expression of miR-146a (p < 0.01) and decreased expression of all four OC-specific genes (p < 0.05). WB results indicated decreased expression of EGFR (p < 0.01) and TRAF6 (p < 0.05). The number of OCs decreased markedly and bone resorption assay demonstrated inhibited activity. This miR-146a delivery system could be applied to induce overexpression of miR-146a and to inhibit the differentiation and function of OCs.