Cargando…

Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish

Toll-like receptor 9 (TLR9) recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alter...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Frank Fang-Yao, Chuang, Hsiang-Chieh, Chen, Nai-Yu, Nagarajan, Govindarajulu, Chiou, Pinwen Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425437/
https://www.ncbi.nlm.nih.gov/pubmed/25955250
http://dx.doi.org/10.1371/journal.pone.0126388
_version_ 1782370481756700672
author Lee, Frank Fang-Yao
Chuang, Hsiang-Chieh
Chen, Nai-Yu
Nagarajan, Govindarajulu
Chiou, Pinwen Peter
author_facet Lee, Frank Fang-Yao
Chuang, Hsiang-Chieh
Chen, Nai-Yu
Nagarajan, Govindarajulu
Chiou, Pinwen Peter
author_sort Lee, Frank Fang-Yao
collection PubMed
description Toll-like receptor 9 (TLR9) recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length) and gTLR9B (with a truncated Cʹ-terminal signal transducing domain), whose regulation and function remain unclear. Here, we report a unique regulatory mechanism of gTLR9 signaling in orange-spotted grouper (Epinephelus coioides), whose gTlr9 sequence also contains two introns. We demonstrated that the grouper gTlr9 gene indeed has the capacity to produce two gTLR9 isoforms via alternative RNA splicing. We found that gTLR9B could function as a negative regulator to suppress gTLR9 signaling as demonstrated by the suppression of downstream gene expression. Following stimulation with CpG oligodeoxynucleotide (ODN), gTLR9A and gTLR9B were observed to translocate into endosomes and co-localize with ODN and the adaptor protein gMyD88. Both gTLR9A and gTLR9B could interact with gMyD88; however, gTLR9B could not interact with downstream IRAK4 and TRAF6. Further analysis of the expression profile of gTlr9A and gTlr9B upon immune-stimulation revealed that the two isoforms were differentially regulated in a time-dependent manner. Overall, these data suggest that fish TLR9B functions as a negative regulator, and that its temporal expression is mediated by alternative RNA splicing. This has not been observed in mammalian TLR9s and might have been acquired relatively recently in the evolution of fish.
format Online
Article
Text
id pubmed-4425437
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44254372015-05-21 Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish Lee, Frank Fang-Yao Chuang, Hsiang-Chieh Chen, Nai-Yu Nagarajan, Govindarajulu Chiou, Pinwen Peter PLoS One Research Article Toll-like receptor 9 (TLR9) recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length) and gTLR9B (with a truncated Cʹ-terminal signal transducing domain), whose regulation and function remain unclear. Here, we report a unique regulatory mechanism of gTLR9 signaling in orange-spotted grouper (Epinephelus coioides), whose gTlr9 sequence also contains two introns. We demonstrated that the grouper gTlr9 gene indeed has the capacity to produce two gTLR9 isoforms via alternative RNA splicing. We found that gTLR9B could function as a negative regulator to suppress gTLR9 signaling as demonstrated by the suppression of downstream gene expression. Following stimulation with CpG oligodeoxynucleotide (ODN), gTLR9A and gTLR9B were observed to translocate into endosomes and co-localize with ODN and the adaptor protein gMyD88. Both gTLR9A and gTLR9B could interact with gMyD88; however, gTLR9B could not interact with downstream IRAK4 and TRAF6. Further analysis of the expression profile of gTlr9A and gTlr9B upon immune-stimulation revealed that the two isoforms were differentially regulated in a time-dependent manner. Overall, these data suggest that fish TLR9B functions as a negative regulator, and that its temporal expression is mediated by alternative RNA splicing. This has not been observed in mammalian TLR9s and might have been acquired relatively recently in the evolution of fish. Public Library of Science 2015-05-08 /pmc/articles/PMC4425437/ /pubmed/25955250 http://dx.doi.org/10.1371/journal.pone.0126388 Text en © 2015 Lee et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lee, Frank Fang-Yao
Chuang, Hsiang-Chieh
Chen, Nai-Yu
Nagarajan, Govindarajulu
Chiou, Pinwen Peter
Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish
title Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish
title_full Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish
title_fullStr Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish
title_full_unstemmed Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish
title_short Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish
title_sort toll-like receptor 9 alternatively spliced isoform negatively regulates tlr9 signaling in teleost fish
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425437/
https://www.ncbi.nlm.nih.gov/pubmed/25955250
http://dx.doi.org/10.1371/journal.pone.0126388
work_keys_str_mv AT leefrankfangyao tolllikereceptor9alternativelysplicedisoformnegativelyregulatestlr9signalinginteleostfish
AT chuanghsiangchieh tolllikereceptor9alternativelysplicedisoformnegativelyregulatestlr9signalinginteleostfish
AT chennaiyu tolllikereceptor9alternativelysplicedisoformnegativelyregulatestlr9signalinginteleostfish
AT nagarajangovindarajulu tolllikereceptor9alternativelysplicedisoformnegativelyregulatestlr9signalinginteleostfish
AT chioupinwenpeter tolllikereceptor9alternativelysplicedisoformnegativelyregulatestlr9signalinginteleostfish