Cargando…
Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity
Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive...
Autores principales: | Hull, Michael J., Soffe, Stephen R., Willshaw, David J., Roberts, Alan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425518/ https://www.ncbi.nlm.nih.gov/pubmed/25954930 http://dx.doi.org/10.1371/journal.pcbi.1004240 |
Ejemplares similares
-
Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity
por: Hull, Michael J., et al.
Publicado: (2016) -
Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles
por: Li, Wen-Chang, et al.
Publicado: (2009) -
The role of electrical coupling in the decision to initiate swimming in young frog tadpoles
por: Hull, Michael, et al.
Publicado: (2012) -
GABA Increases Electrical Excitability in a Subset of Human Unmyelinated Peripheral Axons
por: Carr, Richard W., et al.
Publicado: (2010) -
The metabolic efficiency of myelinated vs unmyelinated axons
por: Neishabouri, Ali M, et al.
Publicado: (2011)