Cargando…

The Glocal Forest

Spatial ecological patterns reflect the underlying processes that shape the structure of species and communities. Mechanisms like intra- and inter-specific competition, dispersal and host-pathogen interactions can act over a wide range of scales. Yet, the inference of such processes from patterns is...

Descripción completa

Detalles Bibliográficos
Autores principales: Seri, Efrat, Shtilerman, Elad, Shnerb, Nadav M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425529/
https://www.ncbi.nlm.nih.gov/pubmed/25955587
http://dx.doi.org/10.1371/journal.pone.0126117
Descripción
Sumario:Spatial ecological patterns reflect the underlying processes that shape the structure of species and communities. Mechanisms like intra- and inter-specific competition, dispersal and host-pathogen interactions can act over a wide range of scales. Yet, the inference of such processes from patterns is a challenging task. Here we call attention to a quite unexpected phenomenon in the extensively studied tropical forest at the Barro-Colorado Island (BCI): the spatial deployment of (almost) all tree species is statistically equivalent, once distances are normalized by ℓ (0), the typical distance between neighboring conspecific trees. Correlation function, cluster statistics and nearest-neighbor distance distribution become species-independent after this rescaling. Global observables (species frequencies) and local spatial structure appear to be interrelated. This "glocality" suggests a radical interpretation of recent experiments that show a correlation between species' abundance and the negative feedback among conspecifics. For the forest to be glocal, the negative feedback must govern spatial patterns over all scales.