Cargando…
Dynamic prediction of outcome for patients with severe aortic stenosis: application of joint models for longitudinal and time-to-event data
BACKGROUND: Physicians utilize different types of information to predict patient prognosis. For example: confronted with a new patient suffering from severe aortic stenosis (AS), the cardiologist considers not only the severity of the AS but also patient characteristics, medical history, and markers...
Autores principales: | Andrinopoulou, Eleni-Rosalina, Rizopoulos, Dimitris, Geleijnse, Marcel L., Lesaffre, Emmanuel, Bogers, Ad J. J. C., Takkenberg, Johanna J. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425918/ https://www.ncbi.nlm.nih.gov/pubmed/25943388 http://dx.doi.org/10.1186/s12872-015-0035-z |
Ejemplares similares
-
Integrating latent classes in the Bayesian shared parameter joint
model of longitudinal and survival outcomes
por: Andrinopoulou, Eleni-Rosalina, et al.
Publicado: (2020) -
Statistical primer: an introduction to the application of linear mixed-effects models in cardiothoracic surgery outcomes research—a case study using homograft pulmonary valve replacement data
por: Wang, Xu, et al.
Publicado: (2022) -
Joint models for longitudinal and time-to-event data : with applications in R
por: Rizopoulos, Dimitris
Publicado: (2012) -
Joint Models for Longitudinal and Time-to-Event Data: With Applications in R
por: Rizopoulos, Dimitris
Publicado: (2012) -
Incorporating historical controls in clinical trials with longitudinal outcomes using the modified power prior
por: Qi, Hongchao, et al.
Publicado: (2022)