Cargando…

Impact of body tilt on the central aortic pressure pulse

The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects...

Descripción completa

Detalles Bibliográficos
Autores principales: Rotaru, Corina, Liaudet, Lucas, Waeber, Bernard, Feihl, François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425966/
https://www.ncbi.nlm.nih.gov/pubmed/25862096
http://dx.doi.org/10.14814/phy2.12360
Descripción
Sumario:The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, −10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (T(cf)) and carotid-tibial forward propagation times (T(ct)) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both T(ct) (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in T(ct) and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9–2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs.