Cargando…
A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data
In this paper, we introduce several statistical methods to evaluate the uncertainty in the concentration index (C) for measuring socioeconomic equality in health and health care using aggregated total population register data. The C is a widely used index when measuring socioeconomic inequality, but...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426159/ https://www.ncbi.nlm.nih.gov/pubmed/25983615 http://dx.doi.org/10.1007/s10742-015-0137-1 |
_version_ | 1782370566049628160 |
---|---|
author | Lumme, Sonja Sund, Reijo Leyland, Alastair H. Keskimäki, Ilmo |
author_facet | Lumme, Sonja Sund, Reijo Leyland, Alastair H. Keskimäki, Ilmo |
author_sort | Lumme, Sonja |
collection | PubMed |
description | In this paper, we introduce several statistical methods to evaluate the uncertainty in the concentration index (C) for measuring socioeconomic equality in health and health care using aggregated total population register data. The C is a widely used index when measuring socioeconomic inequality, but previous studies have mainly focused on developing statistical inference for sampled data from population surveys. While data from large population-based or national registers provide complete coverage, registration comprises several sources of error. We simulate confidence intervals for the C with different Monte Carlo approaches, which take into account the nature of the population data. As an empirical example, we have an extensive dataset from the Finnish cause-of-death register on mortality amenable to health care interventions between 1996 and 2008. Amenable mortality has been often used as a tool to capture the effectiveness of health care. Thus, inequality in amenable mortality provides evidence on weaknesses in health care performance between socioeconomic groups. Our study shows using several approaches with different parametric assumptions that previously introduced methods to estimate the uncertainty of the C for sampled data are too conservative for aggregated population register data. Consequently, we recommend that inequality indices based on the register data should be presented together with an approximation of the uncertainty and suggest using a simulation approach we propose. The approach can also be adapted to other measures of equality in health. |
format | Online Article Text |
id | pubmed-4426159 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-44261592015-05-13 A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data Lumme, Sonja Sund, Reijo Leyland, Alastair H. Keskimäki, Ilmo Health Serv Outcomes Res Methodol Article In this paper, we introduce several statistical methods to evaluate the uncertainty in the concentration index (C) for measuring socioeconomic equality in health and health care using aggregated total population register data. The C is a widely used index when measuring socioeconomic inequality, but previous studies have mainly focused on developing statistical inference for sampled data from population surveys. While data from large population-based or national registers provide complete coverage, registration comprises several sources of error. We simulate confidence intervals for the C with different Monte Carlo approaches, which take into account the nature of the population data. As an empirical example, we have an extensive dataset from the Finnish cause-of-death register on mortality amenable to health care interventions between 1996 and 2008. Amenable mortality has been often used as a tool to capture the effectiveness of health care. Thus, inequality in amenable mortality provides evidence on weaknesses in health care performance between socioeconomic groups. Our study shows using several approaches with different parametric assumptions that previously introduced methods to estimate the uncertainty of the C for sampled data are too conservative for aggregated population register data. Consequently, we recommend that inequality indices based on the register data should be presented together with an approximation of the uncertainty and suggest using a simulation approach we propose. The approach can also be adapted to other measures of equality in health. Springer US 2015-02-18 2015 /pmc/articles/PMC4426159/ /pubmed/25983615 http://dx.doi.org/10.1007/s10742-015-0137-1 Text en © The Author(s) 2015 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Article Lumme, Sonja Sund, Reijo Leyland, Alastair H. Keskimäki, Ilmo A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data |
title | A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data |
title_full | A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data |
title_fullStr | A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data |
title_full_unstemmed | A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data |
title_short | A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data |
title_sort | monte carlo method to estimate the confidence intervals for the concentration index using aggregated population register data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426159/ https://www.ncbi.nlm.nih.gov/pubmed/25983615 http://dx.doi.org/10.1007/s10742-015-0137-1 |
work_keys_str_mv | AT lummesonja amontecarlomethodtoestimatetheconfidenceintervalsfortheconcentrationindexusingaggregatedpopulationregisterdata AT sundreijo amontecarlomethodtoestimatetheconfidenceintervalsfortheconcentrationindexusingaggregatedpopulationregisterdata AT leylandalastairh amontecarlomethodtoestimatetheconfidenceintervalsfortheconcentrationindexusingaggregatedpopulationregisterdata AT keskimakiilmo amontecarlomethodtoestimatetheconfidenceintervalsfortheconcentrationindexusingaggregatedpopulationregisterdata AT lummesonja montecarlomethodtoestimatetheconfidenceintervalsfortheconcentrationindexusingaggregatedpopulationregisterdata AT sundreijo montecarlomethodtoestimatetheconfidenceintervalsfortheconcentrationindexusingaggregatedpopulationregisterdata AT leylandalastairh montecarlomethodtoestimatetheconfidenceintervalsfortheconcentrationindexusingaggregatedpopulationregisterdata AT keskimakiilmo montecarlomethodtoestimatetheconfidenceintervalsfortheconcentrationindexusingaggregatedpopulationregisterdata |