Cargando…
Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the geneti...
Autores principales: | Wang, Jun, Zhou, Bi-hua, Zhou, Shu-dao, Sheng, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426662/ https://www.ncbi.nlm.nih.gov/pubmed/26000011 http://dx.doi.org/10.1155/2015/341031 |
Ejemplares similares
-
Transiently chaotic simulated annealing based on intrinsic nonlinearity of memristors for efficient solution of optimization problems
por: Yang, Ke, et al.
Publicado: (2020) -
Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting
por: Meng, Xiangyi, et al.
Publicado: (2021) -
Chaotic Enhanced Genetic Algorithm for Solving the Nonlinear System of Equations
por: Algelany, A. M., et al.
Publicado: (2022) -
Elements of nonlinear time series analysis and forecasting
por: De Gooijer, Jan G
Publicado: (2017) -
Deformation Estimation for Time Series InSAR Using Simulated Annealing Algorithm
por: Duan, Wei, et al.
Publicado: (2018)