Cargando…
Oxyntomodulin regulates resetting of the liver circadian clock by food
Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light–dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426666/ https://www.ncbi.nlm.nih.gov/pubmed/25821984 http://dx.doi.org/10.7554/eLife.06253 |
_version_ | 1782370615341088768 |
---|---|
author | Landgraf, Dominic Tsang, Anthony H Leliavski, Alexei Koch, Christiane E Barclay, Johanna L Drucker, Daniel J Oster, Henrik |
author_facet | Landgraf, Dominic Tsang, Anthony H Leliavski, Alexei Koch, Christiane E Barclay, Johanna L Drucker, Daniel J Oster, Henrik |
author_sort | Landgraf, Dominic |
collection | PubMed |
description | Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light–dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. DOI: http://dx.doi.org/10.7554/eLife.06253.001 |
format | Online Article Text |
id | pubmed-4426666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-44266662015-05-12 Oxyntomodulin regulates resetting of the liver circadian clock by food Landgraf, Dominic Tsang, Anthony H Leliavski, Alexei Koch, Christiane E Barclay, Johanna L Drucker, Daniel J Oster, Henrik eLife Biochemistry Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light–dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. DOI: http://dx.doi.org/10.7554/eLife.06253.001 eLife Sciences Publications, Ltd 2015-03-30 /pmc/articles/PMC4426666/ /pubmed/25821984 http://dx.doi.org/10.7554/eLife.06253 Text en © 2015, Landgraf et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry Landgraf, Dominic Tsang, Anthony H Leliavski, Alexei Koch, Christiane E Barclay, Johanna L Drucker, Daniel J Oster, Henrik Oxyntomodulin regulates resetting of the liver circadian clock by food |
title | Oxyntomodulin regulates resetting of the liver circadian clock by food |
title_full | Oxyntomodulin regulates resetting of the liver circadian clock by food |
title_fullStr | Oxyntomodulin regulates resetting of the liver circadian clock by food |
title_full_unstemmed | Oxyntomodulin regulates resetting of the liver circadian clock by food |
title_short | Oxyntomodulin regulates resetting of the liver circadian clock by food |
title_sort | oxyntomodulin regulates resetting of the liver circadian clock by food |
topic | Biochemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426666/ https://www.ncbi.nlm.nih.gov/pubmed/25821984 http://dx.doi.org/10.7554/eLife.06253 |
work_keys_str_mv | AT landgrafdominic oxyntomodulinregulatesresettingofthelivercircadianclockbyfood AT tsanganthonyh oxyntomodulinregulatesresettingofthelivercircadianclockbyfood AT leliavskialexei oxyntomodulinregulatesresettingofthelivercircadianclockbyfood AT kochchristianee oxyntomodulinregulatesresettingofthelivercircadianclockbyfood AT barclayjohannal oxyntomodulinregulatesresettingofthelivercircadianclockbyfood AT druckerdanielj oxyntomodulinregulatesresettingofthelivercircadianclockbyfood AT osterhenrik oxyntomodulinregulatesresettingofthelivercircadianclockbyfood |