Cargando…

Four-pole galvanic vestibular stimulation causes body sway about three axes

Galvanic vestibular stimulation (GVS) can be applied to induce the feeling of directional virtual head motion by stimulating the vestibular organs electrically. Conventional studies used a two-pole GVS, in which electrodes are placed behind each ear, or a three-pole GVS, in which an additional elect...

Descripción completa

Detalles Bibliográficos
Autores principales: Aoyama, Kazuma, Iizuka, Hiroyuki, Ando, Hideyuki, Maeda, Taro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426693/
https://www.ncbi.nlm.nih.gov/pubmed/25959790
http://dx.doi.org/10.1038/srep10168
Descripción
Sumario:Galvanic vestibular stimulation (GVS) can be applied to induce the feeling of directional virtual head motion by stimulating the vestibular organs electrically. Conventional studies used a two-pole GVS, in which electrodes are placed behind each ear, or a three-pole GVS, in which an additional electrode is placed on the forehead. These stimulation methods can be used to induce virtual head roll and pitch motions when a subject is looking upright. Here, we proved our hypothesis that there are current paths between the forehead and mastoids in the head and show that our invented GVS system using four electrodes succeeded in inducing directional virtual head motion around three perpendicular axes containing yaw rotation by applying different current patterns. Our novel method produced subjective virtual head yaw motions and evoked yaw rotational body sway in participants. These results support the existence of three isolated current paths located between the mastoids, and between the left and right mastoids and the forehead. Our findings show that by using these current paths, the generation of an additional virtual head yaw motion is possible.