Cargando…
Computing Molecular Signatures as Optima of a Bi-Objective Function: Method and Application to Prediction in Oncogenomics
BACKGROUND: Filter feature selection methods compute molecular signatures by selecting subsets of genes in the ranking of a valuation function. The motivations of the valuation functions choice are almost always clearly stated, but those for selecting the genes according to their ranking are hardly...
Autores principales: | Gardeux, Vincent, Chelouah, Rachid, Wanderley, Maria F Barbosa, Siarry, Patrick, Braga, Antônio P, Reyal, Fabien, Rouzier, Roman, Pusztai, Lajos, Natowicz, René |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426938/ https://www.ncbi.nlm.nih.gov/pubmed/25983540 http://dx.doi.org/10.4137/CIN.S21111 |
Ejemplares similares
-
Prediction of the outcome of preoperative chemotherapy in breast cancer using DNA probes that provide information on both complete and incomplete responses
por: Natowicz, René, et al.
Publicado: (2008) -
Statistical measures of transcriptional diversity capture genomic heterogeneity of cancer
por: Jiang, Tingting, et al.
Publicado: (2014) -
Onco-STS: a web-based laboratory information management system for sample and analysis tracking in oncogenomic experiments
por: Gavrielides, Mike, et al.
Publicado: (2014) -
Personalized oncogenomics
por: Jones, Steven JM, et al.
Publicado: (2010) -
Precision oncogenomics
por: Ferreira-Gonzalez, Andrea, et al.
Publicado: (2019)