Cargando…

Molecular Mechanisms of ZnO Nanoparticle Dispersion in Solution: Modeling of Surfactant Association, Electrostatic Shielding and Counter Ion Dynamics

Molecular models of 5 nm sized ZnO/Zn(OH)2 core-shell nanoparticles in ethanolic solution were derived as scale-up models (based on an earlier model created from ion-by-ion aggregation and self-organization) and subjected to mechanistic analyses of surface stabilization by block-copolymers. The latt...

Descripción completa

Detalles Bibliográficos
Autores principales: Duchstein, Patrick, Milek, Theodor, Zahn, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427181/
https://www.ncbi.nlm.nih.gov/pubmed/25962096
http://dx.doi.org/10.1371/journal.pone.0125872
Descripción
Sumario:Molecular models of 5 nm sized ZnO/Zn(OH)2 core-shell nanoparticles in ethanolic solution were derived as scale-up models (based on an earlier model created from ion-by-ion aggregation and self-organization) and subjected to mechanistic analyses of surface stabilization by block-copolymers. The latter comprise a poly-methacrylate chain accounting for strong surfactant association to the nanoparticle by hydrogen bonding and salt-bridges. While dangling poly-ethylene oxide chains provide only a limited degree of sterical hindering to nanoparticle agglomeration, the key mechanism of surface stabilization is electrostatic shielding arising from the acrylates and a halo of Na(+) counter ions associated to the nanoparticle. Molecular dynamics simulations reveal different solvent shells and distance-dependent mobility of ions and solvent molecules. From this, we provide a molecular rationale of effective particle size, net charge and polarizability of the nanoparticles in solution.