Cargando…
Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes
Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complemen...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427203/ https://www.ncbi.nlm.nih.gov/pubmed/25945584 http://dx.doi.org/10.1107/S1399004715004551 |
_version_ | 1782370690709585920 |
---|---|
author | Morgan, Rhodri M. L. Pal, Mohinder Roe, S. Mark Pearl, Laurence H. Prodromou, Chrisostomos |
author_facet | Morgan, Rhodri M. L. Pal, Mohinder Roe, S. Mark Pearl, Laurence H. Prodromou, Chrisostomos |
author_sort | Morgan, Rhodri M. L. |
collection | PubMed |
description | Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90)(2)–Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes. |
format | Online Article Text |
id | pubmed-4427203 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-44272032015-05-25 Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes Morgan, Rhodri M. L. Pal, Mohinder Roe, S. Mark Pearl, Laurence H. Prodromou, Chrisostomos Acta Crystallogr D Biol Crystallogr Research Papers Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90)(2)–Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes. International Union of Crystallography 2015-04-25 /pmc/articles/PMC4427203/ /pubmed/25945584 http://dx.doi.org/10.1107/S1399004715004551 Text en © Morgan et al. 2015 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Research Papers Morgan, Rhodri M. L. Pal, Mohinder Roe, S. Mark Pearl, Laurence H. Prodromou, Chrisostomos Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes |
title | Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes |
title_full | Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes |
title_fullStr | Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes |
title_full_unstemmed | Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes |
title_short | Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes |
title_sort | tah1 helix-swap dimerization prevents mixed hsp90 co-chaperone complexes |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427203/ https://www.ncbi.nlm.nih.gov/pubmed/25945584 http://dx.doi.org/10.1107/S1399004715004551 |
work_keys_str_mv | AT morganrhodriml tah1helixswapdimerizationpreventsmixedhsp90cochaperonecomplexes AT palmohinder tah1helixswapdimerizationpreventsmixedhsp90cochaperonecomplexes AT roesmark tah1helixswapdimerizationpreventsmixedhsp90cochaperonecomplexes AT pearllaurenceh tah1helixswapdimerizationpreventsmixedhsp90cochaperonecomplexes AT prodromouchrisostomos tah1helixswapdimerizationpreventsmixedhsp90cochaperonecomplexes |