Cargando…

A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations

Humans living at high altitude (≥2,500 meters above sea level) have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most el...

Descripción completa

Detalles Bibliográficos
Autores principales: Valverde, Guido, Zhou, Hang, Lippold, Sebastian, de Filippo, Cesare, Tang, Kun, López Herráez, David, Li, Jing, Stoneking, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427407/
https://www.ncbi.nlm.nih.gov/pubmed/25961286
http://dx.doi.org/10.1371/journal.pone.0125444
_version_ 1782370726759628800
author Valverde, Guido
Zhou, Hang
Lippold, Sebastian
de Filippo, Cesare
Tang, Kun
López Herráez, David
Li, Jing
Stoneking, Mark
author_facet Valverde, Guido
Zhou, Hang
Lippold, Sebastian
de Filippo, Cesare
Tang, Kun
López Herráez, David
Li, Jing
Stoneking, Mark
author_sort Valverde, Guido
collection PubMed
description Humans living at high altitude (≥2,500 meters above sea level) have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most elevated regions of the world have undergone extensive physiological and/or genetic changes, particularly in the regulation of respiration and circulation, when compared to lowland populations. Genome scans have identified candidate genes involved in altitude adaption in the Tibetan Plateau and the Ethiopian highlands, in contrast to populations from the Andes, which have not been as intensively investigated. In the present study, we focused on three indigenous populations from Bolivia: two groups of Andean natives, Aymara and Quechua, and the low-altitude control group of Guarani from the Gran Chaco lowlands. Using pooled samples, we identified a number of SNPs exhibiting large allele frequency differences over 900,000 genotyped SNPs. A region in chromosome 10 (within the cytogenetic bands q22.3 and q23.1) was significantly differentiated between highland and lowland groups. We resequenced ~1.5 Mb surrounding the candidate region and identified strong signals of positive selection in the highland populations. A composite of multiple signals like test localized the signal to FAM213A and a related enhancer; the product of this gene acts as an antioxidant to lower oxidative stress and may help to maintain bone mass. The results suggest that positive selection on the enhancer might increase the expression of this antioxidant, and thereby prevent oxidative damage. In addition, the most significant signal in a relative extended haplotype homozygosity analysis was localized to the SFTPD gene, which encodes a surfactant pulmonary-associated protein involved in normal respiration and innate host defense. Our study thus identifies two novel candidate genes and associated pathways that may be involved in high-altitude adaptation in Andean populations.
format Online
Article
Text
id pubmed-4427407
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44274072015-05-21 A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations Valverde, Guido Zhou, Hang Lippold, Sebastian de Filippo, Cesare Tang, Kun López Herráez, David Li, Jing Stoneking, Mark PLoS One Research Article Humans living at high altitude (≥2,500 meters above sea level) have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most elevated regions of the world have undergone extensive physiological and/or genetic changes, particularly in the regulation of respiration and circulation, when compared to lowland populations. Genome scans have identified candidate genes involved in altitude adaption in the Tibetan Plateau and the Ethiopian highlands, in contrast to populations from the Andes, which have not been as intensively investigated. In the present study, we focused on three indigenous populations from Bolivia: two groups of Andean natives, Aymara and Quechua, and the low-altitude control group of Guarani from the Gran Chaco lowlands. Using pooled samples, we identified a number of SNPs exhibiting large allele frequency differences over 900,000 genotyped SNPs. A region in chromosome 10 (within the cytogenetic bands q22.3 and q23.1) was significantly differentiated between highland and lowland groups. We resequenced ~1.5 Mb surrounding the candidate region and identified strong signals of positive selection in the highland populations. A composite of multiple signals like test localized the signal to FAM213A and a related enhancer; the product of this gene acts as an antioxidant to lower oxidative stress and may help to maintain bone mass. The results suggest that positive selection on the enhancer might increase the expression of this antioxidant, and thereby prevent oxidative damage. In addition, the most significant signal in a relative extended haplotype homozygosity analysis was localized to the SFTPD gene, which encodes a surfactant pulmonary-associated protein involved in normal respiration and innate host defense. Our study thus identifies two novel candidate genes and associated pathways that may be involved in high-altitude adaptation in Andean populations. Public Library of Science 2015-05-11 /pmc/articles/PMC4427407/ /pubmed/25961286 http://dx.doi.org/10.1371/journal.pone.0125444 Text en © 2015 Valverde et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Valverde, Guido
Zhou, Hang
Lippold, Sebastian
de Filippo, Cesare
Tang, Kun
López Herráez, David
Li, Jing
Stoneking, Mark
A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations
title A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations
title_full A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations
title_fullStr A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations
title_full_unstemmed A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations
title_short A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations
title_sort novel candidate region for genetic adaptation to high altitude in andean populations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427407/
https://www.ncbi.nlm.nih.gov/pubmed/25961286
http://dx.doi.org/10.1371/journal.pone.0125444
work_keys_str_mv AT valverdeguido anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT zhouhang anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT lippoldsebastian anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT defilippocesare anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT tangkun anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT lopezherraezdavid anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT lijing anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT stonekingmark anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT valverdeguido novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT zhouhang novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT lippoldsebastian novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT defilippocesare novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT tangkun novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT lopezherraezdavid novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT lijing novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations
AT stonekingmark novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations