Cargando…
A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations
Humans living at high altitude (≥2,500 meters above sea level) have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most el...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427407/ https://www.ncbi.nlm.nih.gov/pubmed/25961286 http://dx.doi.org/10.1371/journal.pone.0125444 |
_version_ | 1782370726759628800 |
---|---|
author | Valverde, Guido Zhou, Hang Lippold, Sebastian de Filippo, Cesare Tang, Kun López Herráez, David Li, Jing Stoneking, Mark |
author_facet | Valverde, Guido Zhou, Hang Lippold, Sebastian de Filippo, Cesare Tang, Kun López Herráez, David Li, Jing Stoneking, Mark |
author_sort | Valverde, Guido |
collection | PubMed |
description | Humans living at high altitude (≥2,500 meters above sea level) have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most elevated regions of the world have undergone extensive physiological and/or genetic changes, particularly in the regulation of respiration and circulation, when compared to lowland populations. Genome scans have identified candidate genes involved in altitude adaption in the Tibetan Plateau and the Ethiopian highlands, in contrast to populations from the Andes, which have not been as intensively investigated. In the present study, we focused on three indigenous populations from Bolivia: two groups of Andean natives, Aymara and Quechua, and the low-altitude control group of Guarani from the Gran Chaco lowlands. Using pooled samples, we identified a number of SNPs exhibiting large allele frequency differences over 900,000 genotyped SNPs. A region in chromosome 10 (within the cytogenetic bands q22.3 and q23.1) was significantly differentiated between highland and lowland groups. We resequenced ~1.5 Mb surrounding the candidate region and identified strong signals of positive selection in the highland populations. A composite of multiple signals like test localized the signal to FAM213A and a related enhancer; the product of this gene acts as an antioxidant to lower oxidative stress and may help to maintain bone mass. The results suggest that positive selection on the enhancer might increase the expression of this antioxidant, and thereby prevent oxidative damage. In addition, the most significant signal in a relative extended haplotype homozygosity analysis was localized to the SFTPD gene, which encodes a surfactant pulmonary-associated protein involved in normal respiration and innate host defense. Our study thus identifies two novel candidate genes and associated pathways that may be involved in high-altitude adaptation in Andean populations. |
format | Online Article Text |
id | pubmed-4427407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44274072015-05-21 A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations Valverde, Guido Zhou, Hang Lippold, Sebastian de Filippo, Cesare Tang, Kun López Herráez, David Li, Jing Stoneking, Mark PLoS One Research Article Humans living at high altitude (≥2,500 meters above sea level) have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most elevated regions of the world have undergone extensive physiological and/or genetic changes, particularly in the regulation of respiration and circulation, when compared to lowland populations. Genome scans have identified candidate genes involved in altitude adaption in the Tibetan Plateau and the Ethiopian highlands, in contrast to populations from the Andes, which have not been as intensively investigated. In the present study, we focused on three indigenous populations from Bolivia: two groups of Andean natives, Aymara and Quechua, and the low-altitude control group of Guarani from the Gran Chaco lowlands. Using pooled samples, we identified a number of SNPs exhibiting large allele frequency differences over 900,000 genotyped SNPs. A region in chromosome 10 (within the cytogenetic bands q22.3 and q23.1) was significantly differentiated between highland and lowland groups. We resequenced ~1.5 Mb surrounding the candidate region and identified strong signals of positive selection in the highland populations. A composite of multiple signals like test localized the signal to FAM213A and a related enhancer; the product of this gene acts as an antioxidant to lower oxidative stress and may help to maintain bone mass. The results suggest that positive selection on the enhancer might increase the expression of this antioxidant, and thereby prevent oxidative damage. In addition, the most significant signal in a relative extended haplotype homozygosity analysis was localized to the SFTPD gene, which encodes a surfactant pulmonary-associated protein involved in normal respiration and innate host defense. Our study thus identifies two novel candidate genes and associated pathways that may be involved in high-altitude adaptation in Andean populations. Public Library of Science 2015-05-11 /pmc/articles/PMC4427407/ /pubmed/25961286 http://dx.doi.org/10.1371/journal.pone.0125444 Text en © 2015 Valverde et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Valverde, Guido Zhou, Hang Lippold, Sebastian de Filippo, Cesare Tang, Kun López Herráez, David Li, Jing Stoneking, Mark A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations |
title | A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations |
title_full | A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations |
title_fullStr | A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations |
title_full_unstemmed | A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations |
title_short | A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations |
title_sort | novel candidate region for genetic adaptation to high altitude in andean populations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427407/ https://www.ncbi.nlm.nih.gov/pubmed/25961286 http://dx.doi.org/10.1371/journal.pone.0125444 |
work_keys_str_mv | AT valverdeguido anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT zhouhang anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT lippoldsebastian anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT defilippocesare anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT tangkun anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT lopezherraezdavid anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT lijing anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT stonekingmark anovelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT valverdeguido novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT zhouhang novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT lippoldsebastian novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT defilippocesare novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT tangkun novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT lopezherraezdavid novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT lijing novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations AT stonekingmark novelcandidateregionforgeneticadaptationtohighaltitudeinandeanpopulations |