Cargando…

Targeting epidermal fatty acid binding protein for treatment of experimental autoimmune encephalomyelitis

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease in which dysregulated immune cells attack myelin in the central nervous system (CNS), leading to irreversible neuronal degeneration. Our previous studies have demonstrated that epidermal fatty acid binding protein (E-FABP), widely expresse...

Descripción completa

Detalles Bibliográficos
Autores principales: Rao, Enyu, Singh, Puja, Li, Yan, Zhang, Yuwen, Chi, Young-In, Suttles, Jill, Li, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427938/
https://www.ncbi.nlm.nih.gov/pubmed/25962726
http://dx.doi.org/10.1186/s12865-015-0091-2
Descripción
Sumario:BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease in which dysregulated immune cells attack myelin in the central nervous system (CNS), leading to irreversible neuronal degeneration. Our previous studies have demonstrated that epidermal fatty acid binding protein (E-FABP), widely expressed in immune cells, in particular in dendritic cells (DCs) and T lymphocytes, fuels the overactive immune responses in the mouse model of experimental autoimmune encephalomyelitis (EAE). METHODS: In the present study, we conducted an intensive computational docking analysis to identify novel E-FABP inhibitors for regulation of immune cell functions and for treatment of EAE. RESULTS: We demonstrate that compound [2-(4-acetylphenoxy)-9,10-dimethoxy-6,7-dihydropyrimido[6,1-a]isoquinolin-4-one; designated as EI-03] bound to the lipid binding pocket of E-FABP and enhanced the expression of peroxisome proliferator-activating receptor (PPAR) γ. Further in vitro experiments showed that EI-03 regulated DC functions by inhibition of TNFα production while promoting IL-10 secretion. Moreover, EI-03 treatment counterregulated T cell balance by decreasing effector T cell differentiation (e.g. Th17, Th1) while increasing regulatory T cell development. Most importantly, mice treated with this newly identified compound exhibited reduced clinical symptoms of EAE in mouse models. CONCLUSIONS: Taken together, we have identified a new compound which displays a potential therapeutic benefit for treatment of MS by targeting E-FABP.