Cargando…

Determining minimum set of driver nodes in protein-protein interaction networks

BACKGROUND: Recently, several studies have drawn attention to the determination of a minimum set of driver proteins that are important for the control of the underlying protein-protein interaction (PPI) networks. In general, the minimum dominating set (MDS) model is widely adopted. However, because...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiao-Fei, Ou-Yang, Le, Zhu, Yuan, Wu, Meng-Yun, Dai, Dao-Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428234/
https://www.ncbi.nlm.nih.gov/pubmed/25947063
http://dx.doi.org/10.1186/s12859-015-0591-3
_version_ 1782370859699142656
author Zhang, Xiao-Fei
Ou-Yang, Le
Zhu, Yuan
Wu, Meng-Yun
Dai, Dao-Qing
author_facet Zhang, Xiao-Fei
Ou-Yang, Le
Zhu, Yuan
Wu, Meng-Yun
Dai, Dao-Qing
author_sort Zhang, Xiao-Fei
collection PubMed
description BACKGROUND: Recently, several studies have drawn attention to the determination of a minimum set of driver proteins that are important for the control of the underlying protein-protein interaction (PPI) networks. In general, the minimum dominating set (MDS) model is widely adopted. However, because the MDS model does not generate a unique MDS configuration, multiple different MDSs would be generated when using different optimization algorithms. Therefore, among these MDSs, it is difficult to find out the one that represents the true driver set of proteins. RESULTS: To address this problem, we develop a centrality-corrected minimum dominating set (CC-MDS) model which includes heterogeneity in degree and betweenness centralities of proteins. Both the MDS model and the CC-MDS model are applied on three human PPI networks. Unlike the MDS model, the CC-MDS model generates almost the same sets of driver proteins when we implement it using different optimization algorithms. The CC-MDS model targets more high-degree and high-betweenness proteins than the uncorrected counterpart. The more central position allows CC-MDS proteins to be more important in maintaining the overall network connectivity than MDS proteins. To indicate the functional significance, we find that CC-MDS proteins are involved in, on average, more protein complexes and GO annotations than MDS proteins. We also find that more essential genes, aging genes, disease-associated genes and virus-targeted genes appear in CC-MDS proteins than in MDS proteins. As for the involvement in regulatory functions, the sets of CC-MDS proteins show much stronger enrichment of transcription factors and protein kinases. The results about topological and functional significance demonstrate that the CC-MDS model can capture more driver proteins than the MDS model. CONCLUSIONS: Based on the results obtained, the CC-MDS model presents to be a powerful tool for the determination of driver proteins that can control the underlying PPI networks. The software described in this paper and the datasets used are available at https://github.com/Zhangxf-ccnu/CC-MDS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0591-3) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4428234
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-44282342015-05-13 Determining minimum set of driver nodes in protein-protein interaction networks Zhang, Xiao-Fei Ou-Yang, Le Zhu, Yuan Wu, Meng-Yun Dai, Dao-Qing BMC Bioinformatics Research Article BACKGROUND: Recently, several studies have drawn attention to the determination of a minimum set of driver proteins that are important for the control of the underlying protein-protein interaction (PPI) networks. In general, the minimum dominating set (MDS) model is widely adopted. However, because the MDS model does not generate a unique MDS configuration, multiple different MDSs would be generated when using different optimization algorithms. Therefore, among these MDSs, it is difficult to find out the one that represents the true driver set of proteins. RESULTS: To address this problem, we develop a centrality-corrected minimum dominating set (CC-MDS) model which includes heterogeneity in degree and betweenness centralities of proteins. Both the MDS model and the CC-MDS model are applied on three human PPI networks. Unlike the MDS model, the CC-MDS model generates almost the same sets of driver proteins when we implement it using different optimization algorithms. The CC-MDS model targets more high-degree and high-betweenness proteins than the uncorrected counterpart. The more central position allows CC-MDS proteins to be more important in maintaining the overall network connectivity than MDS proteins. To indicate the functional significance, we find that CC-MDS proteins are involved in, on average, more protein complexes and GO annotations than MDS proteins. We also find that more essential genes, aging genes, disease-associated genes and virus-targeted genes appear in CC-MDS proteins than in MDS proteins. As for the involvement in regulatory functions, the sets of CC-MDS proteins show much stronger enrichment of transcription factors and protein kinases. The results about topological and functional significance demonstrate that the CC-MDS model can capture more driver proteins than the MDS model. CONCLUSIONS: Based on the results obtained, the CC-MDS model presents to be a powerful tool for the determination of driver proteins that can control the underlying PPI networks. The software described in this paper and the datasets used are available at https://github.com/Zhangxf-ccnu/CC-MDS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0591-3) contains supplementary material, which is available to authorized users. BioMed Central 2015-05-07 /pmc/articles/PMC4428234/ /pubmed/25947063 http://dx.doi.org/10.1186/s12859-015-0591-3 Text en © Zhang et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Zhang, Xiao-Fei
Ou-Yang, Le
Zhu, Yuan
Wu, Meng-Yun
Dai, Dao-Qing
Determining minimum set of driver nodes in protein-protein interaction networks
title Determining minimum set of driver nodes in protein-protein interaction networks
title_full Determining minimum set of driver nodes in protein-protein interaction networks
title_fullStr Determining minimum set of driver nodes in protein-protein interaction networks
title_full_unstemmed Determining minimum set of driver nodes in protein-protein interaction networks
title_short Determining minimum set of driver nodes in protein-protein interaction networks
title_sort determining minimum set of driver nodes in protein-protein interaction networks
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428234/
https://www.ncbi.nlm.nih.gov/pubmed/25947063
http://dx.doi.org/10.1186/s12859-015-0591-3
work_keys_str_mv AT zhangxiaofei determiningminimumsetofdrivernodesinproteinproteininteractionnetworks
AT ouyangle determiningminimumsetofdrivernodesinproteinproteininteractionnetworks
AT zhuyuan determiningminimumsetofdrivernodesinproteinproteininteractionnetworks
AT wumengyun determiningminimumsetofdrivernodesinproteinproteininteractionnetworks
AT daidaoqing determiningminimumsetofdrivernodesinproteinproteininteractionnetworks