Cargando…

β-Alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD

This study investigated the effects of β-alanine (BA) ingestion on the behavioral and neuroendocrine response of post-traumatic stress disorder (PTSD) in a murine model. Animals were fed a normal diet with or without (PL) BA supplementation (100 mg kg(−1)) for 30 days. Animals were then exposed to a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoffman, Jay R., Ostfeld, Ishay, Stout, Jeffrey R., Harris, Roger C., Kaplan, Zeev, Cohen, Hagit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429141/
https://www.ncbi.nlm.nih.gov/pubmed/25758106
http://dx.doi.org/10.1007/s00726-015-1952-y
Descripción
Sumario:This study investigated the effects of β-alanine (BA) ingestion on the behavioral and neuroendocrine response of post-traumatic stress disorder (PTSD) in a murine model. Animals were fed a normal diet with or without (PL) BA supplementation (100 mg kg(−1)) for 30 days. Animals were then exposed to a predator-scent stress (PSS) or a sham (UNEX). Behaviors were evaluated using an elevated plus maze (EPM) and acoustic startle response (ASR) 7 days following exposure to the PSS. Corticosterone concentrations (CS), expression of brain-derived neurotrophic factor (BDNF), and brain carnosine concentrations were analyzed a day later. Animals in PSS+PL spent significantly less time in the open arms and in the number of entries in the EPM than PSS+BA, UNEX+BA, or UNEX+PL. Animals in PSS+BA had comparable scores to UNEX+BA. Anxiety index was higher (p < 0.05) in PSS+PL compared to PSS+BA or animals that were unexposed. ASR and freezing were greater (p < 0.05) in animals exposed to PSS compared to animals unexposed. CS expression was higher (p < 0.05) in animals exposed to PSS compared to unexposed animals. Brain carnosine concentrations in the hippocampus and other brain sections were significantly greater in animals supplemented with BA compared to PL. BDNF expression in the CA1 and DG subregions of the hippocampus was lower (p < 0.05) in animals exposed and fed a normal diet compared to animals exposed and supplemented with BA, or animals unexposed. In conclusion, BA supplementation in rats increased brain carnosine concentrations and resulted in a reduction in PTSD-like behavior, which may be mediated in part by maintaining BDNF expression in the hippocampus.