Cargando…

Resting state brain activity in patients with migraine: a magnetoencephalography study

BACKGROUND: Recent advances in migraine research have shown that the cerebral cortex serves a primary role in the pathogenesis of migraine. Since aberrant brain activity in migraine can be noninvasively detected with magnetoencephalography (MEG), The object of this study was to investigate the resti...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hongxing, Ge, Huaiting, Xiang, Jing, Miao, Ailiang, Tang, Lu, Wu, Ting, Chen, Qiqi, Yang, Lu, Wang, Xiaoshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Milan 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429423/
https://www.ncbi.nlm.nih.gov/pubmed/25968099
http://dx.doi.org/10.1186/s10194-015-0525-5
Descripción
Sumario:BACKGROUND: Recent advances in migraine research have shown that the cerebral cortex serves a primary role in the pathogenesis of migraine. Since aberrant brain activity in migraine can be noninvasively detected with magnetoencephalography (MEG), The object of this study was to investigate the resting state cortical activity differences between migraineurs and controls and its related clinical characteristics. METHODS: Twenty-two subjects with an acute migraine and twenty-two age- and gender-matched controls were studied using MEG. MEG recordings were recorded 120 seconds during the headache attack. Analyze MEG signals from low (1–4 Hz) to high (200–1000 Hz)-frequency ranges. RESULTS: In comparison with the controls, brain activity in migraine subjects was significantly different from that of the controls both in two frequency ranges (55–90 Hz, p < 0.001) and (90–200 Hz, p < 0.004). But the power value showed no significantly differences between control and migraines in all frequency ranges (p > 0.05). All the clinical characteristics had no significant correlation with aberrant brain activity. CONCLUSIONS: The results demonstrated that migraine subjects in resting state had significantly aberrant ictal brain activity that can be measured with neuromagnetic imaging techniques. The findings may facilitate the development of new therapeutic strategies in migraine treatment via alterations in cortical excitability with TMS and other medications in the future.