Cargando…
Using interviewer random effects to remove selection bias from HIV prevalence estimates
BACKGROUND: Selection bias in HIV prevalence estimates occurs if non-participation in testing is correlated with HIV status. Longitudinal data suggests that individuals who know or suspect they are HIV positive are less likely to participate in testing in HIV surveys, in which case methods to correc...
Autores principales: | McGovern, Mark E, Bärnighausen, Till, Salomon, Joshua A, Canning, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429465/ https://www.ncbi.nlm.nih.gov/pubmed/25656226 http://dx.doi.org/10.1186/1471-2288-15-8 |
Ejemplares similares
-
National HIV prevalence estimates for sub-Saharan Africa: controlling selection bias with Heckman-type selection models
por: Hogan, Daniel R, et al.
Publicado: (2012) -
Adjusting HIV prevalence estimates for non-participation: an application to demographic surveillance
por: McGovern, Mark E., et al.
Publicado: (2015) -
Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers
por: McGovern, Mark E., et al.
Publicado: (2018) -
Do gifts increase consent to home-based HIV testing? A difference-in-differences study in rural KwaZulu-Natal, South Africa
por: McGovern, Mark E, et al.
Publicado: (2016) -
Quality-adjusted life year weights and treatment bias: Theory and evidence from cognitive interviews
por: Patenaude, Bryan N, et al.
Publicado: (2019)