Cargando…
Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations
PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) and split hand/foot malformation (SHFM) are two rare genetic conditions. Here we report a clinical entity comprising CHH and SHFM. METHODS: We identified patients with CHH and SHFM through international collaboration. Probands and available fam...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430466/ https://www.ncbi.nlm.nih.gov/pubmed/25394172 http://dx.doi.org/10.1038/gim.2014.166 |
Sumario: | PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) and split hand/foot malformation (SHFM) are two rare genetic conditions. Here we report a clinical entity comprising CHH and SHFM. METHODS: We identified patients with CHH and SHFM through international collaboration. Probands and available family members underwent phenotyping and screening for FGFR1 mutations. The impact of identified mutations was assessed by sequence- and structure-based predictions, and/or functional assays. RESULTS: We identified 8 probands with CHH with (n=3, Kallmann Syndrome) or without anosmia (n=5) and SHFM, 7 of whom (88%) harbor FGFR1 mutations: one individual is homozygous for p.V429E; six individuals are heterozygous for p.G348R, p.G485R, p.Q594*, p.E670A, p.V688L, and p.L712P. All mutations were predicted to be loss-of-function by in silico analysis. Probands with FGFR1 mutations have severe GnRH deficiency (absent puberty and/or cryptorchidism and/or micropenis). SHFM in both hands and feet was only observed in the patient with the homozygous p.V429E mutation; V429 maps to the FRS2α binding domain of FGFR1, and functional studies of the p.V429E mutation demonstrated that it decreased recruitment and phosphorylation of FRS2α to FG FR 1 , thereby resulting in reduced MAPK signaling. CONCLUSION: FGFR1 should be prioritized for genetic testing in patients with CHH and SHFM, because the likelihood of a mutation increases from 10% in the general CHH population to 88%. |
---|