Cargando…

Histological, histochemical and ultrastructural analysis reveals functional division of the oesophagogastric segment in freshwater tubenose goby Proterorhinus semilunaris Heckel, 1837

Histological and histochemical features of the oesophagogastric segment of the alimentary canal as well as ultrastructure of gastric gland cells of freshwater tubenose goby Proterorhinus semilunaris were examined. The studies revealed that despite the lack of anatomical distinction, the oesophagogas...

Descripción completa

Detalles Bibliográficos
Autores principales: Wołczuk, Katarzyna, Nowakowska, Julita, Płąchocki, Dariusz, Kakareko, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430593/
https://www.ncbi.nlm.nih.gov/pubmed/25995536
http://dx.doi.org/10.1007/s00435-014-0250-7
Descripción
Sumario:Histological and histochemical features of the oesophagogastric segment of the alimentary canal as well as ultrastructure of gastric gland cells of freshwater tubenose goby Proterorhinus semilunaris were examined. The studies revealed that despite the lack of anatomical distinction, the oesophagogastric segment is histologically divided into the oesophagus, oesogaster and stomach, which provides evidence for the functional compartmentation of this organ. The oesophagus was characterised by the presence of numerous goblet cells secreting mainly a mixture of neutral and acid mucopolysaccharides. In the stomach, the apical zone of the surface epithelial cells contained neutral mucopolysaccharides. Numerous proliferating cells were scattered throughout the surface epithelium. In the lamina propria of the stomach, a well-developed layer of gastric glands was observed. The glands were of the alveolar type and occupied nearly the entire length of the stomach except the pyloric region. The gastric gland cells were varied into light and dark; however, their ultrastructure was identical. All cells had numerous mitochondria and a well-developed tubulovesicular system typical for the oxynticopeptic cells, but pepsinogen granules were not present in the cytoplasm of these cells. These findings contribute new evidence to literature reports that not all gobiid fish are stomachless. Moreover, they suggest higher adaptation of the species to utilise protein-rich food compared to stomachless fish, and its ability to adjust the alimentary canal quickly to changing diet. How this may facilitate establishment of P. semilunaris in invaded environments remains an open question.