Cargando…
Motion-Blurred Particle Image Restoration for On-Line Wear Monitoring
On-line images of wear debris contain important information for real-time condition monitoring, and a dynamic imaging technique can eliminate particle overlaps commonly found in static images, for instance, acquired using ferrography. However, dynamic wear debris images captured in a running machine...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431279/ https://www.ncbi.nlm.nih.gov/pubmed/25856328 http://dx.doi.org/10.3390/s150408173 |
Sumario: | On-line images of wear debris contain important information for real-time condition monitoring, and a dynamic imaging technique can eliminate particle overlaps commonly found in static images, for instance, acquired using ferrography. However, dynamic wear debris images captured in a running machine are unavoidably blurred because the particles in lubricant are in motion. Hence, it is difficult to acquire reliable images of wear debris with an adequate resolution for particle feature extraction. In order to obtain sharp wear particle images, an image processing approach is proposed. Blurred particles were firstly separated from the static background by utilizing a background subtraction method. Second, the point spread function was estimated using power cepstrum to determine the blur direction and length. Then, the Wiener filter algorithm was adopted to perform image restoration to improve the image quality. Finally, experiments were conducted with a large number of dynamic particle images to validate the effectiveness of the proposed method and the performance of the approach was also evaluated. This study provides a new practical approach to acquire clear images for on-line wear monitoring. |
---|