Cargando…

Motion-Blurred Particle Image Restoration for On-Line Wear Monitoring

On-line images of wear debris contain important information for real-time condition monitoring, and a dynamic imaging technique can eliminate particle overlaps commonly found in static images, for instance, acquired using ferrography. However, dynamic wear debris images captured in a running machine...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Yeping, Wu, Tonghai, Wang, Shuo, Kwok, Ngaiming, Peng, Zhongxiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431279/
https://www.ncbi.nlm.nih.gov/pubmed/25856328
http://dx.doi.org/10.3390/s150408173
Descripción
Sumario:On-line images of wear debris contain important information for real-time condition monitoring, and a dynamic imaging technique can eliminate particle overlaps commonly found in static images, for instance, acquired using ferrography. However, dynamic wear debris images captured in a running machine are unavoidably blurred because the particles in lubricant are in motion. Hence, it is difficult to acquire reliable images of wear debris with an adequate resolution for particle feature extraction. In order to obtain sharp wear particle images, an image processing approach is proposed. Blurred particles were firstly separated from the static background by utilizing a background subtraction method. Second, the point spread function was estimated using power cepstrum to determine the blur direction and length. Then, the Wiener filter algorithm was adopted to perform image restoration to improve the image quality. Finally, experiments were conducted with a large number of dynamic particle images to validate the effectiveness of the proposed method and the performance of the approach was also evaluated. This study provides a new practical approach to acquire clear images for on-line wear monitoring.