Cargando…
Using Machine Learning to Estimate Global PM(2.5) for Environmental Health Studies
With the increasing awareness of health impacts of particulate matter, there is a growing need to comprehend the spatial and temporal variations of the global abundance of ground-level airborne particulate matter (PM(2.5)). Here we use a suite of remote sensing and meteorological data products toget...
Autores principales: | Lary, D. J., Lary, T., Sattler, B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431482/ https://www.ncbi.nlm.nih.gov/pubmed/26005352 http://dx.doi.org/10.4137/EHI.S15664 |
Ejemplares similares
-
Insights Into the Morphology of the East Asia PM(2.5) Annual Cycle Provided by Machine Learning
por: Wu, Daji, et al.
Publicado: (2017) -
Machine learning driven by environmental covariates to estimate high-resolution PM2.5 in data-poor regions
por: Jin, XiaoYe, et al.
Publicado: (2022) -
Using machine learning to estimate atmospheric Ambrosia pollen concentrations in Tulsa, OK
por: Liu, Xun, et al.
Publicado: (2017) -
A machine learning-based model to estimate PM2.5 concentration levels in Delhi's atmosphere
por: Kumar, Saurabh, et al.
Publicado: (2020) -
Autonomous Learning of New Environments with a Robotic Team Employing Hyper-Spectral Remote Sensing, Comprehensive In-Situ Sensing and Machine Learning
por: Lary, David J., et al.
Publicado: (2021)