Cargando…
Niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment
Acute exposure to iron can be lethal to fish, but long-term sublethal impacts of iron require further study. Here we investigated whether the spatial and temporal distribution (1967–2004) of two closely related species of stickleback matched the spatial distribution of iron concentrations in the gro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431660/ https://www.ncbi.nlm.nih.gov/pubmed/25999780 http://dx.doi.org/10.1007/s10452-012-9395-y |
_version_ | 1782371381738995712 |
---|---|
author | Verberk, Wilco C. E. P. van den Munckhof, Piet J. J. Pollux, Bart J. A. |
author_facet | Verberk, Wilco C. E. P. van den Munckhof, Piet J. J. Pollux, Bart J. A. |
author_sort | Verberk, Wilco C. E. P. |
collection | PubMed |
description | Acute exposure to iron can be lethal to fish, but long-term sublethal impacts of iron require further study. Here we investigated whether the spatial and temporal distribution (1967–2004) of two closely related species of stickleback matched the spatial distribution of iron concentrations in the groundwater. We used the ‘Northern Peel region’, a historically iron-rich peat landscape in The Netherlands as a case study. This allowed us to test the hypothesis that niche segregation in two closely related species of stickleback occurred along a physiological axis. Patterns in stickleback occurrence were strongly associated with spatial patterns in iron concentrations before 1979: iron-rich grid cells were avoided by three-spined stickleback (Gasterosteus aculeatus, Linnaeus 1758) and preferred by nine-spined stickleback (Pungitius pungitius, [Linnaeus, 1758]). After 1979, the separation between both sticklebacks became weaker, corresponding to a decreased influence of local groundwater on stream water quality. The way both species changed their distribution in the field provides a strong indication that they differ in their susceptibility to iron-rich conditions. These observed differences correspond with differences in their respiration physiology, tolerance of poor oxygen conditions and overall life-history strategy documented in the literature. Our results exemplify how species can partition niche along a non-structural niche axis, such as sublethal iron-rich conditions. Other fish species may similarly segregate along concentration gradients in iron, while sublethal concentrations of other metals such as copper may similarly impact fish via respiratory impairment and reduced aerobic scope. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10452-012-9395-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4431660 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-44316602015-05-19 Niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment Verberk, Wilco C. E. P. van den Munckhof, Piet J. J. Pollux, Bart J. A. Aquat Ecol Article Acute exposure to iron can be lethal to fish, but long-term sublethal impacts of iron require further study. Here we investigated whether the spatial and temporal distribution (1967–2004) of two closely related species of stickleback matched the spatial distribution of iron concentrations in the groundwater. We used the ‘Northern Peel region’, a historically iron-rich peat landscape in The Netherlands as a case study. This allowed us to test the hypothesis that niche segregation in two closely related species of stickleback occurred along a physiological axis. Patterns in stickleback occurrence were strongly associated with spatial patterns in iron concentrations before 1979: iron-rich grid cells were avoided by three-spined stickleback (Gasterosteus aculeatus, Linnaeus 1758) and preferred by nine-spined stickleback (Pungitius pungitius, [Linnaeus, 1758]). After 1979, the separation between both sticklebacks became weaker, corresponding to a decreased influence of local groundwater on stream water quality. The way both species changed their distribution in the field provides a strong indication that they differ in their susceptibility to iron-rich conditions. These observed differences correspond with differences in their respiration physiology, tolerance of poor oxygen conditions and overall life-history strategy documented in the literature. Our results exemplify how species can partition niche along a non-structural niche axis, such as sublethal iron-rich conditions. Other fish species may similarly segregate along concentration gradients in iron, while sublethal concentrations of other metals such as copper may similarly impact fish via respiratory impairment and reduced aerobic scope. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10452-012-9395-y) contains supplementary material, which is available to authorized users. Springer Netherlands 2012-04-21 2012 /pmc/articles/PMC4431660/ /pubmed/25999780 http://dx.doi.org/10.1007/s10452-012-9395-y Text en © The Author(s) 2012 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Article Verberk, Wilco C. E. P. van den Munckhof, Piet J. J. Pollux, Bart J. A. Niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment |
title | Niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment |
title_full | Niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment |
title_fullStr | Niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment |
title_full_unstemmed | Niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment |
title_short | Niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment |
title_sort | niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431660/ https://www.ncbi.nlm.nih.gov/pubmed/25999780 http://dx.doi.org/10.1007/s10452-012-9395-y |
work_keys_str_mv | AT verberkwilcocep nichesegregationintwocloselyrelatedspeciesofsticklebackalongaphysiologicalaxisexplainingmultidecadalchangesinfishdistributionfromironinducedrespiratoryimpairment AT vandenmunckhofpietjj nichesegregationintwocloselyrelatedspeciesofsticklebackalongaphysiologicalaxisexplainingmultidecadalchangesinfishdistributionfromironinducedrespiratoryimpairment AT polluxbartja nichesegregationintwocloselyrelatedspeciesofsticklebackalongaphysiologicalaxisexplainingmultidecadalchangesinfishdistributionfromironinducedrespiratoryimpairment |