Cargando…

Revisiting GMOs: Are There Differences in European Consumers’ Acceptance and Valuation for Cisgenically vs Transgenically Bred Rice?

Both cisgenesis and transgenesis are plant breeding techniques that can be used to introduce new genes into plant genomes. However, transgenesis uses gene(s) from a non-plant organism or from a donor plant that is sexually incompatible with the recipient plant while cisgenesis involves the introduct...

Descripción completa

Detalles Bibliográficos
Autores principales: Delwaide, Anne-Cécile, Nalley, Lawton L., Dixon, Bruce L., Danforth, Diana M., Nayga, Rodolfo M., Van Loo, Ellen J., Verbeke, Wim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431710/
https://www.ncbi.nlm.nih.gov/pubmed/25973946
http://dx.doi.org/10.1371/journal.pone.0126060
Descripción
Sumario:Both cisgenesis and transgenesis are plant breeding techniques that can be used to introduce new genes into plant genomes. However, transgenesis uses gene(s) from a non-plant organism or from a donor plant that is sexually incompatible with the recipient plant while cisgenesis involves the introduction of gene(s) from a crossable—sexually compatible—plant. Traditional breeding techniques could possibly achieve the same results as those from cisgenesis, but would require a much larger timeframe. Cisgenesis allows plant breeders to enhance an existing cultivar more quickly and with little to no genetic drag. The current regulation in the European Union (EU) on genetically modified organisms (GMOs) treats cisgenic plants the same as transgenic plants and both are mandatorily labeled as GMOs. This study estimates European consumers’ willingness-to-pay (WTP) for rice labeled as GM, cisgenic, with environmental benefits (which cisgenesis could provide), or any combination of these three attributes. Data were collected from 3,002 participants through an online survey administered in Belgium, France, the Netherlands, Spain and the United Kingdom in 2013. Censored regression models were used to model consumers’ WTP in each country. Model estimates highlight significant differences in WTP across countries. In all five countries, consumers are willing-to-pay a premium to avoid purchasing rice labeled as GM. In all countries except Spain, consumers have a significantly higher WTP to avoid consuming rice labeled as GM compared to rice labeled as cisgenic, suggesting that inserting genes from the plant’s own gene pool is more acceptable to consumers. Additionally, French consumers are willing-to-pay a premium for rice labeled as having environmental benefits compared to conventional rice. These findings suggest that not all GMOs are the same in consumers’ eyes and thus, from a consumer preference perspective, the differences between transgenic and cisgenic products are recommended to be reflected in GMO labeling and trade policies.