Cargando…
Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague
Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the fi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431741/ https://www.ncbi.nlm.nih.gov/pubmed/25974210 http://dx.doi.org/10.1371/journal.ppat.1004893 |
_version_ | 1782371401389309952 |
---|---|
author | Vagima, Yaron Zauberman, Ayelet Levy, Yinon Gur, David Tidhar, Avital Aftalion, Moshe Shafferman, Avigdor Mamroud, Emanuelle |
author_facet | Vagima, Yaron Zauberman, Ayelet Levy, Yinon Gur, David Tidhar, Avital Aftalion, Moshe Shafferman, Avigdor Mamroud, Emanuelle |
author_sort | Vagima, Yaron |
collection | PubMed |
description | Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y. pestis strain, no significant changes were observed in the lungs in the levels of neutrophils infiltrate, expression of adhesion molecules, or the expression of the major neutrophil chemoattractants keratinocyte cell-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2) and granulocyte colony stimulating factor (G-CSF). In contrast, early induction of chemokines, rapid neutrophil infiltration and a reduced bacterial burden were observed in the lungs of mice infected with an avirulent Y. pestis strain. In vitro infection of lung-derived cell-lines with a YopJ mutant revealed the involvement of YopJ in the inhibition of chemoattractants expression. However, the recruitment of neutrophils to the lungs of mice infected with the mutant was still delayed and associated with rapid bacterial propagation and mortality. Interestingly, whereas KC, MIP-2 and G-CSF mRNA levels in the lungs were up-regulated early after infection with the mutant, their protein levels remained constant, suggesting that Y. pestis may employ additional mechanisms to suppress early chemoattractants induction in the lung. It therefore seems that prevention of the early influx of neutrophils to the lungs is of major importance for Y. pestis virulence. Indeed, pulmonary instillation of KC and MIP-2 to G-CSF-treated mice infected with Y. pestis led to rapid homing of neutrophils to the lung followed by a reduction in bacterial counts at 24 hr post-infection and improved survival rates. These observations shed new light on the virulence mechanisms of Y. pestis during pneumonic plague, and have implications for the development of novel therapies against this pathogen. |
format | Online Article Text |
id | pubmed-4431741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44317412015-05-27 Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague Vagima, Yaron Zauberman, Ayelet Levy, Yinon Gur, David Tidhar, Avital Aftalion, Moshe Shafferman, Avigdor Mamroud, Emanuelle PLoS Pathog Research Article Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y. pestis strain, no significant changes were observed in the lungs in the levels of neutrophils infiltrate, expression of adhesion molecules, or the expression of the major neutrophil chemoattractants keratinocyte cell-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2) and granulocyte colony stimulating factor (G-CSF). In contrast, early induction of chemokines, rapid neutrophil infiltration and a reduced bacterial burden were observed in the lungs of mice infected with an avirulent Y. pestis strain. In vitro infection of lung-derived cell-lines with a YopJ mutant revealed the involvement of YopJ in the inhibition of chemoattractants expression. However, the recruitment of neutrophils to the lungs of mice infected with the mutant was still delayed and associated with rapid bacterial propagation and mortality. Interestingly, whereas KC, MIP-2 and G-CSF mRNA levels in the lungs were up-regulated early after infection with the mutant, their protein levels remained constant, suggesting that Y. pestis may employ additional mechanisms to suppress early chemoattractants induction in the lung. It therefore seems that prevention of the early influx of neutrophils to the lungs is of major importance for Y. pestis virulence. Indeed, pulmonary instillation of KC and MIP-2 to G-CSF-treated mice infected with Y. pestis led to rapid homing of neutrophils to the lung followed by a reduction in bacterial counts at 24 hr post-infection and improved survival rates. These observations shed new light on the virulence mechanisms of Y. pestis during pneumonic plague, and have implications for the development of novel therapies against this pathogen. Public Library of Science 2015-05-14 /pmc/articles/PMC4431741/ /pubmed/25974210 http://dx.doi.org/10.1371/journal.ppat.1004893 Text en © 2015 Vagima et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Vagima, Yaron Zauberman, Ayelet Levy, Yinon Gur, David Tidhar, Avital Aftalion, Moshe Shafferman, Avigdor Mamroud, Emanuelle Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague |
title | Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague |
title_full | Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague |
title_fullStr | Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague |
title_full_unstemmed | Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague |
title_short | Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague |
title_sort | circumventing y. pestis virulence by early recruitment of neutrophils to the lungs during pneumonic plague |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431741/ https://www.ncbi.nlm.nih.gov/pubmed/25974210 http://dx.doi.org/10.1371/journal.ppat.1004893 |
work_keys_str_mv | AT vagimayaron circumventingypestisvirulencebyearlyrecruitmentofneutrophilstothelungsduringpneumonicplague AT zaubermanayelet circumventingypestisvirulencebyearlyrecruitmentofneutrophilstothelungsduringpneumonicplague AT levyyinon circumventingypestisvirulencebyearlyrecruitmentofneutrophilstothelungsduringpneumonicplague AT gurdavid circumventingypestisvirulencebyearlyrecruitmentofneutrophilstothelungsduringpneumonicplague AT tidharavital circumventingypestisvirulencebyearlyrecruitmentofneutrophilstothelungsduringpneumonicplague AT aftalionmoshe circumventingypestisvirulencebyearlyrecruitmentofneutrophilstothelungsduringpneumonicplague AT shaffermanavigdor circumventingypestisvirulencebyearlyrecruitmentofneutrophilstothelungsduringpneumonicplague AT mamroudemanuelle circumventingypestisvirulencebyearlyrecruitmentofneutrophilstothelungsduringpneumonicplague |