Cargando…
Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector
Cardiomyopathies due to mutations in human β-cardiac myosin are a significant cause of heart failure, sudden death, and arrhythmia. To understand the underlying molecular basis of changes in the contractile system’s force production due to such mutations and search for potential drugs that restore f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431957/ https://www.ncbi.nlm.nih.gov/pubmed/25937279 http://dx.doi.org/10.1016/j.celrep.2015.04.006 |
_version_ | 1782371431421575168 |
---|---|
author | Aksel, Tural Yu, Elizabeth Choe Sutton, Shirley Ruppel, Kathleen M. Spudich, James A. |
author_facet | Aksel, Tural Yu, Elizabeth Choe Sutton, Shirley Ruppel, Kathleen M. Spudich, James A. |
author_sort | Aksel, Tural |
collection | PubMed |
description | Cardiomyopathies due to mutations in human β-cardiac myosin are a significant cause of heart failure, sudden death, and arrhythmia. To understand the underlying molecular basis of changes in the contractile system’s force production due to such mutations and search for potential drugs that restore force generation, an in vitro assay is necessary to evaluate cardiac myosin’s ensemble force using purified proteins. Here, we characterize the ensemble force of human α- and β-cardiac myosin isoforms and those of β-cardiac myosins carrying left ventricular non-compaction (M531R) and dilated cardiomyopathy (S532P) mutations using a utrophin-based loaded in vitro motility assay and new filament-tracking software. Our results show that human α- and β-cardiac myosin, as well as the mutants, show opposite mechanical and enzymatic phenotypes with respect to each other. We also show that omecamtiv mecarbil, a previously discovered cardiac-specific myosin activator, increases β-cardiac myosin force generation. |
format | Online Article Text |
id | pubmed-4431957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-44319572016-05-12 Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector Aksel, Tural Yu, Elizabeth Choe Sutton, Shirley Ruppel, Kathleen M. Spudich, James A. Cell Rep Article Cardiomyopathies due to mutations in human β-cardiac myosin are a significant cause of heart failure, sudden death, and arrhythmia. To understand the underlying molecular basis of changes in the contractile system’s force production due to such mutations and search for potential drugs that restore force generation, an in vitro assay is necessary to evaluate cardiac myosin’s ensemble force using purified proteins. Here, we characterize the ensemble force of human α- and β-cardiac myosin isoforms and those of β-cardiac myosins carrying left ventricular non-compaction (M531R) and dilated cardiomyopathy (S532P) mutations using a utrophin-based loaded in vitro motility assay and new filament-tracking software. Our results show that human α- and β-cardiac myosin, as well as the mutants, show opposite mechanical and enzymatic phenotypes with respect to each other. We also show that omecamtiv mecarbil, a previously discovered cardiac-specific myosin activator, increases β-cardiac myosin force generation. 2015-04-30 2015-05-12 /pmc/articles/PMC4431957/ /pubmed/25937279 http://dx.doi.org/10.1016/j.celrep.2015.04.006 Text en © 2015 The Authors This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Aksel, Tural Yu, Elizabeth Choe Sutton, Shirley Ruppel, Kathleen M. Spudich, James A. Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector |
title | Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector |
title_full | Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector |
title_fullStr | Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector |
title_full_unstemmed | Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector |
title_short | Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector |
title_sort | ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431957/ https://www.ncbi.nlm.nih.gov/pubmed/25937279 http://dx.doi.org/10.1016/j.celrep.2015.04.006 |
work_keys_str_mv | AT akseltural ensembleforcechangesthatresultfromhumancardiacmyosinmutationsandasmallmoleculeeffector AT yuelizabethchoe ensembleforcechangesthatresultfromhumancardiacmyosinmutationsandasmallmoleculeeffector AT suttonshirley ensembleforcechangesthatresultfromhumancardiacmyosinmutationsandasmallmoleculeeffector AT ruppelkathleenm ensembleforcechangesthatresultfromhumancardiacmyosinmutationsandasmallmoleculeeffector AT spudichjamesa ensembleforcechangesthatresultfromhumancardiacmyosinmutationsandasmallmoleculeeffector |