Cargando…
Suppress to Survive—Implication of Plant Viruses in PTGS
In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the pre...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432016/ https://www.ncbi.nlm.nih.gov/pubmed/25999662 http://dx.doi.org/10.1007/s11105-014-0755-8 |
Sumario: | In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the presence of double-stranded RNAs (dsRNAs) in planta. The sequence-specific mechanism of silencing is based on RNase-mediated trimming of dsRNAs into translationally inactive short molecules. Viruses invading and replicating in host are also a source of dsRNAs and are recognized as such by cellular posttranscriptional silencing machinery leading to degradation of the pathogenic RNA. However, viruses are not totally defenseless. In parallel with evolving plant defense strategies, viruses have managed a wide range of multifunctional proteins that efficiently impede the posttranscriptional gene silencing. These viral counteracting factors are known as suppressors of RNA silencing. The aim of this review is to summarize the role and the mode of action of several functionally characterized RNA silencing suppressors encoded by RNA viruses directly involved in plant–pathogen interactions. Additionally, we point out that the widely diverse functions, structures, and modes of action of viral suppressors can be performed by different proteins, even in related viruses. All those adaptations have been evolved to achieve the same goal: to maximize the rate of viral genetic material replication by interrupting the evolutionary conserved plant defense mechanism of posttranscriptional gene silencing. |
---|