Cargando…

Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes

Electrochemical energy-storage devices have the potential to be clean and efficient, but their current cost and performance limit their use in numerous transportation and stationary applications. Many organic molecules are abundant, economical and electrochemically active; if selected correctly and...

Descripción completa

Detalles Bibliográficos
Autores principales: Bachman, John C., Kavian, Reza, Graham, Daniel J., Kim, Dong Young, Noda, Suguru, Nocera, Daniel G., Shao-Horn, Yang, Lee, Seung Woo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432658/
https://www.ncbi.nlm.nih.gov/pubmed/25943905
http://dx.doi.org/10.1038/ncomms8040
Descripción
Sumario:Electrochemical energy-storage devices have the potential to be clean and efficient, but their current cost and performance limit their use in numerous transportation and stationary applications. Many organic molecules are abundant, economical and electrochemically active; if selected correctly and rationally designed, these organic molecules offer a promising route to expand the applications of these energy-storage devices. In this study, polycyclic aromatic hydrocarbons are introduced within a functionalized few-walled carbon nanotube matrix to develop high-energy, high-power positive electrodes for pseudocapacitor applications. The reduction potential and capacity of various polycyclic aromatic hydrocarbons are correlated with their interaction with the functionalized few-walled carbon nanotube matrix, chemical configuration and electronic structure. These findings provide rational design criteria for nanostructured organic electrodes. When combined with lithium negative electrodes, these nanostructured organic electrodes exhibit energy densities of ∼350 Wh kg(−1)(electrode) at power densities of ∼10 kW kg(−1)(electrode) for over 10,000 cycles.