Cargando…

Assessment of Potential Targets for Deep Brain Stimulation in Patients With Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting 36 million people worldwide and 5.2 million in the United States. The pathogenesis of AD is still elusive. Accumulations of abnormal proteins (beta amyloid and tau protein), inflammatory cascades, abnormal responses to ox...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Mayur, Deogaonkar, Milind, Rezai, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elmer Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432890/
https://www.ncbi.nlm.nih.gov/pubmed/26015813
http://dx.doi.org/10.14740/jocmr2127w
Descripción
Sumario:Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting 36 million people worldwide and 5.2 million in the United States. The pathogenesis of AD is still elusive. Accumulations of abnormal proteins (beta amyloid and tau protein), inflammatory cascades, abnormal responses to oxidative stress and alteration in oxidative metabolism have been implicated in AD. There are few effective therapeutic options available for this disorder at present. Neuromodulation offers a novel treatment modality for patients with AD. The databases of Medline and PubMed were searched for various studies in English literature describing the deep brain stimulation (DBS) in patients with AD. Various animal and human clinical studies have shown promising initial results with bilateral DBS targeting various anatomical nodes. In this review, we attempt to highlight the pathophysiology, neural circuitry and potential neuromodulation options in patients with AD. In appropriately selected patients, DBS can potentially delay the cognitive decline, enhance memory functions and can improve the overall quality of life. However, further randomized controlled trials are required to validate the efficacy of neuromodulation and to determine the most optimal target for AD.