Cargando…

Changes in protein thiols in response to salt stress in embryogenic suspension cultures of Dactylis glomerata L.

The aim of the present study is to assess the rate of protein disulphide formation and the activity of NADPH-dependent thioredoxin and glutaredoxin systems, responsible for the reverse reduction of protein and mixed protein-glutathione disulphides, in embryogenic suspension cultures of Dactylis glom...

Descripción completa

Detalles Bibliográficos
Autores principales: Zagorchev, Lyuben, Terzieva, Miroslava, Stoichkova, Marina, Odjakova, Mariela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433836/
https://www.ncbi.nlm.nih.gov/pubmed/26019548
http://dx.doi.org/10.1080/13102818.2014.946798
Descripción
Sumario:The aim of the present study is to assess the rate of protein disulphide formation and the activity of NADPH-dependent thioredoxin and glutaredoxin systems, responsible for the reverse reduction of protein and mixed protein-glutathione disulphides, in embryogenic suspension cultures of Dactylis glomerata, subjected to salt stress. Two concentrations of NaCl previously established as enhancing (0.085 mol/L) and inhibiting (0.17 mol/L) somatic embryogenesis were used. The quantitative (by colour reaction with Ellman's reagent) and qualitative (by diagonal gel electrophoresis) analyses showed a significant increase in protein disulphide formation in salt-treated cultures compared to controls. The ratio of disulphides to free thiols is higher in 0.17 mol/L NaCl-treated cultures. The activity of the thioredoxin–thioredoxin reductase system has been increased accordingly in 0.085 mol/L NaCl-treated cultures but decreased at the higher salt concentration. The activity of glutaredoxins was also estimated, by using glutathionylated bovine serum albumin as substrate and following the decrease of NADPH absorbance at 340 nm in the presence of glutathione and glutathione reductase. Mild salt (0.085 mol/L NaCl) treated cultures again showed the highest activity compared to controls and 0.17 mol/L NaCl-treated cultures. Based on these observations it was suggested that salt treatment resulted in increased protein disulphide formation and thioredoxin and glutaredoxin systems are important regulators of this process, strongly involved in salt stress response. The highest activity at 0.085 mol/L NaCl may be also related to the regulatory mechanisms, involved in the potentiating of somatic embryogenesis at this salt concentration.