Cargando…
Fungal biotransformation of ezetimibe
Structural transformation of ezetimibe was performed by fungi Beauvaria bassiana and Cunninghamella blakesleeana. The metabolites were identified by different spectroscopic techniques as (3R,4S)-1-(4-fluorophenyl)-3-((E)-3-(4-fluorophenyl) allyl)-4-(4-hydroxyphenyl) azetidin-2-one (2), (3R, 4S)-1-(4...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433922/ https://www.ncbi.nlm.nih.gov/pubmed/26019581 http://dx.doi.org/10.1080/13102818.2014.966948 |
Sumario: | Structural transformation of ezetimibe was performed by fungi Beauvaria bassiana and Cunninghamella blakesleeana. The metabolites were identified by different spectroscopic techniques as (3R,4S)-1-(4-fluorophenyl)-3-((E)-3-(4-fluorophenyl) allyl)-4-(4-hydroxyphenyl) azetidin-2-one (2), (3R, 4S)-1-(4-fluorophenyl)-3-(3-(4fluorophenyl)-3-oxopropyl)-4-(4-hydroxyphenyl) azetidin-2-one (3), (3R,4S) 1-(4-fluorophenyl)-3-(3-(4-fluorophenyl) propyl)-4-(4-hydroxyphenyl) azetidin-2-one (4) and (2R,5S)-N, 5-bis (4-fluorophenyl)-5-hydroxy-2-(4-hydroxybenzyl) pentanamide (5). This study displays two important features of these fungi, viz., their ability to metabolize halogenated compounds, and their capacity to metabolize drugs that are targets of the UDP-Glucuronyl Transferase System, a phenomenon not commonly observed. |
---|