Cargando…
Clustering performance comparison using K-means and expectation maximization algorithms
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K-means and the expectation maximization (...
Autores principales: | Jung, Yong Gyu, Kang, Min Soo, Heo, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433949/ https://www.ncbi.nlm.nih.gov/pubmed/26019610 http://dx.doi.org/10.1080/13102818.2014.949045 |
Ejemplares similares
-
IterCluster: a barcode clustering algorithm for long fragment read analysis
por: Weng, Jiancong, et al.
Publicado: (2020) -
Deconvoluting simulated metagenomes: the performance of hard- and soft- clustering algorithms applied to metagenomic chromosome conformation capture (3C)
por: DeMaere, Matthew Z., et al.
Publicado: (2016) -
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
por: Bi, Xia-an, et al.
Publicado: (2017) -
An ensemble machine learning model based on multiple filtering and supervised attribute clustering algorithm for classifying cancer samples
por: Bose, Shilpi, et al.
Publicado: (2021) -
A practical comparison of two K-Means clustering algorithms
por: Wilkin, Gregory A, et al.
Publicado: (2008)