Cargando…

Protective effects of traditional Chinese medicine formula NaoShuanTong capsule on haemorheology and cerebral energy metabolism disorders in rats with blood stasis

NaoShuanTong capsule (NSTC), an oral traditional Chinese medicine formula, is composed of Pollen Typhae, Radix Paeoniae Rubra, Rhizoma Gastrodiae, Radix Rhapontici and Radix Curcumae. It has been widely used to treat ischemic stroke in clinic for many years in China. In addition to neuronal apoptosi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hong, Peng, Yao-yao, Liang, Feng-yin, Chen, Si, Li, Pei-bo, Peng, Wei, Liu, Zhong-zheng, Xie, Cheng-shi, Long, Chao-feng, Su, Wei-wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433958/
https://www.ncbi.nlm.nih.gov/pubmed/26019500
http://dx.doi.org/10.1080/13102818.2014.901678
Descripción
Sumario:NaoShuanTong capsule (NSTC), an oral traditional Chinese medicine formula, is composed of Pollen Typhae, Radix Paeoniae Rubra, Rhizoma Gastrodiae, Radix Rhapontici and Radix Curcumae. It has been widely used to treat ischemic stroke in clinic for many years in China. In addition to neuronal apoptosis, haemorheology and cerebral energy metabolism disorders also play an important role in the pathogenesis and development of ischemic stroke. The present study was designed to evaluate the in vivo protective effects of NSTC on haemorheology and cerebral energy metabolism disorders in rats with blood stasis. Sixty specific pathogen-free sprague-dawley rats, male only, were randomly divided into six groups (control group, model group, aspirin (100 mg/kg/d) group, NSTC low-dose (400 mg/kg/d) group, NSTC intermediate-dose (800 mg/kg/d) group, NSTC high-dose (1600 mg/kg/d) group) with 10 animals in each. The rats except those in the control group were placed in ice-cold water (0–4 °C) for 5 min during the time interval (4 h) of two adrenaline hydrochloride injections (0.8 mg/kg) to induce blood stasis. After treatment, whole blood viscosity at three shear rates, plasma viscosity and erythrocyte sedimentation rate significantly decreased in NSTC intermediate- and high-dose groups; erythrocyte aggregation index and red corpuscle electrophoresis index significantly decreased in all the three dose NSTC groups. Moreover, treatment with high-dose NSTC could significantly improve Na(+)–K(+) adenosine triphosphatase (ATPase) and Ca(2+) ATPase activity, as well as lower lactic acid level in brain tissues. These results demonstrated the protective effects of NSTC on haemorheology and cerebral energy metabolism disorders, which may provide scientific information for the further understanding of mechanism(s) of NSTC as a clinical treatment for ischemic stroke. Furthermore, the protective effects of activating blood circulation as observed in this study might create valuable insight for the utilisation of NSTC to be a feasible alternative therapeutic agent for patients with blood stasis.