Cargando…
Comparison of the performances of four hydrophilic polymers as supports for lipase immobilisation
Four hydrophilic polymers in the form of beads – chitosan, alginate, alginate/polyvinyl alcohol (PVA), and chitosan-coated alginate – were used as supports for lipase immobilisation. Hydrogel beads were characterised by bead-size-distribution estimation, surface morphology studies, and polymer inter...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433960/ https://www.ncbi.nlm.nih.gov/pubmed/26019488 http://dx.doi.org/10.1080/13102818.2014.901684 |
Sumario: | Four hydrophilic polymers in the form of beads – chitosan, alginate, alginate/polyvinyl alcohol (PVA), and chitosan-coated alginate – were used as supports for lipase immobilisation. Hydrogel beads were characterised by bead-size-distribution estimation, surface morphology studies, and polymer interactions assessment. Matrix performances – loading efficiency, immobilisation yield, enzyme activity, and stability retention – were evaluated and compared. Although the loading efficiency of the chitosan-coated Ca-alginate beads (79.8%) was inferior to that of the Ca-alginate (87%) and of the Ca-alginate/PVA beads (81.3%), their enzyme immobilisation yield (63.96%) was the most important. Moreover, lipase encapsulated in chitosan-coated Ca-alginate beads demonstrated better pH, thermal, and storage (89% residual activity after 30 days) stabilities. Immobilised lipase activity also increased in the order: alginate/PVA > chitosan > alginate > alginate/chitosan, and displayed a maximum at pH 8 and at temperatures of 45 °C (chitosan and Ca-alginate/PVA beads) and 50 °C (Ca-alginate and chitosan-coated Ca-alginate beads). Thus, chitosan-coated Ca-alginate beads could be considered as a suitable support for lipase immobilisation. |
---|