Cargando…
Antibacterial potential of streptomycete strains from Antarctic soils
The exploration of habitats with unusual environment and poorly explored areas such as Antarctica is one of the strategies for discovery of new biologically active substances and/or new producers. The aim of this study was to identify the actinomycetes isolated from the soils of the island Livingsto...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434119/ https://www.ncbi.nlm.nih.gov/pubmed/26019556 http://dx.doi.org/10.1080/13102818.2014.947066 |
Sumario: | The exploration of habitats with unusual environment and poorly explored areas such as Antarctica is one of the strategies for discovery of new biologically active substances and/or new producers. The aim of this study was to identify the actinomycetes isolated from the soils of the island Livingston – Antarctica and to investigate their potential to synthesize antibacterial agents against phytopathogens. Twenty-three actinomycete strains were the object of this study. Using PCR (polymerase chain reaction) amplification all strains were affiliated to genus Streptomyces. The sequencing of the 16S rRNA for three of the strains showed greatest similarity to Streptomyces tendae for one of them, and revealed that the other strains had closest relations to streptomycetes isolated from anthropogenically unaltered regions including Antarctica. The isolates were studied for production of antibacterial substances both by molecular and culture methods. PCR targeting specific biosynthetic genes involved in the production of some groups of antibiotics was performed. The screening showed that all strains possessed the gene for Type-II polyketide synthase, 11 strains – for non-ribosomal peptide synthetase; 6 strains – for polyene antibiotics; and 4 strains – for glycopeptide antibiotics. The production of antibacterial substances by the strains was tested in vitro against phytopathogenic bacteria. The strains differed in the number of inhibited test – bacteria and in their spectrum of action. Four strains showed a wide range of activity against Gram-positive and Gram-negative phytopathogens. The results obtained revealed that the Antarctic soils are potential source for isolation of streptomycetes producing antibiotics from different groups. |
---|