Cargando…

Predicting Homogeneous Pilus Structure from Monomeric Data and Sparse Constraints

Type IV pili (T4P) and T2SS (Type II Secretion System) pseudopili are filaments extending beyond microbial surfaces, comprising homologous subunits called “pilins.” In this paper, we presented a new approach to predict pseudo atomic models of pili combining ambiguous symmetric constraints with spars...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Ke, Shu, Chuanjun, Yan, Qin, Sun, Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434193/
https://www.ncbi.nlm.nih.gov/pubmed/26064954
http://dx.doi.org/10.1155/2015/817134
Descripción
Sumario:Type IV pili (T4P) and T2SS (Type II Secretion System) pseudopili are filaments extending beyond microbial surfaces, comprising homologous subunits called “pilins.” In this paper, we presented a new approach to predict pseudo atomic models of pili combining ambiguous symmetric constraints with sparse distance information obtained from experiments and based neither on electronic microscope (EM) maps nor on accurate a priori symmetric details. The approach was validated by the reconstruction of the gonococcal (GC) pilus from Neisseria gonorrhoeae, the type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae, and pseudopilus of the pullulanase T2SS (the PulG pilus) from Klebsiella oxytoca. In addition, analyses of computational errors showed that subunits should be treated cautiously, as they are slightly flexible and not strictly rigid bodies. A global sampling in a wider range was also implemented and implied that a pilus might have more than one but fewer than many possible intact conformations.