Cargando…
Identification and characterisation of putative seminal fluid proteins from male reproductive tissue EST libraries in tiger beetles
BACKGROUND: The study of proteins transferred through semen can provide important information for biological questions such as adaptive evolution, the origin of new species and species richness. The objective of this study was to identify seminal fluid proteins (SFPs) that may contribute to the stud...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434525/ https://www.ncbi.nlm.nih.gov/pubmed/25981911 http://dx.doi.org/10.1186/s12864-015-1619-9 |
Sumario: | BACKGROUND: The study of proteins transferred through semen can provide important information for biological questions such as adaptive evolution, the origin of new species and species richness. The objective of this study was to identify seminal fluid proteins (SFPs) that may contribute to the study of the reproductive system of tiger beetles (cicindelids), a group of more than 2,500 species distributed worldwide that occupy a great diversity of habitats. RESULTS: Two cDNA libraries were constructed from the male gonads of Calomera littoralis and Cephalota litorea. Expressed sequence tags (ESTs) were analysed by bioinformatics approaches and 14 unigenes were selected as candidate SFPs, which were submitted to Reverse Transcription Polymerase Chain Reaction (RT-PCR) to identify patterns of tissue-specific expression. We have identified four novel putative SFPs of cicindelids, of which similarity searches did not show homologues with known function. However, two of the protein classes (immune response and hormone) predicted by Protfun are similar to SFPs reported in other insects. Searches for homology in other cicindelids showed one lineage specific SFPs (rapidly evolving proteins), only present in the closely related species C. littoralis and Lophyra flexuosa and two conserved SFP present in other tiger beetles species tested. CONCLUSIONS: This work represents the first characterisation of putative SFPs in Adephagan species of the order Coleoptera. The results will serve as a foundation for further studies aimed to understand gene (and protein) functions and their evolutionary implications in this group of ecologically relevant beetles. |
---|