Cargando…

Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling

The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nu...

Descripción completa

Detalles Bibliográficos
Autores principales: Aliferis, Konstantinos A., Chamoun, Rony, Jabaji, Suha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434919/
https://www.ncbi.nlm.nih.gov/pubmed/26042135
http://dx.doi.org/10.3389/fpls.2015.00344
_version_ 1782371823952855040
author Aliferis, Konstantinos A.
Chamoun, Rony
Jabaji, Suha
author_facet Aliferis, Konstantinos A.
Chamoun, Rony
Jabaji, Suha
author_sort Aliferis, Konstantinos A.
collection PubMed
description The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and (1)H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib.research.mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs.
format Online
Article
Text
id pubmed-4434919
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-44349192015-06-03 Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling Aliferis, Konstantinos A. Chamoun, Rony Jabaji, Suha Front Plant Sci Plant Science The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and (1)H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib.research.mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs. Frontiers Media S.A. 2015-05-18 /pmc/articles/PMC4434919/ /pubmed/26042135 http://dx.doi.org/10.3389/fpls.2015.00344 Text en Copyright © 2015 Aliferis, Chamoun and Jabaji. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Aliferis, Konstantinos A.
Chamoun, Rony
Jabaji, Suha
Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling
title Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling
title_full Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling
title_fullStr Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling
title_full_unstemmed Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling
title_short Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling
title_sort metabolic responses of willow (salix purpurea l.) leaves to mycorrhization as revealed by mass spectrometry and (1)h nmr spectroscopy metabolite profiling
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434919/
https://www.ncbi.nlm.nih.gov/pubmed/26042135
http://dx.doi.org/10.3389/fpls.2015.00344
work_keys_str_mv AT aliferiskonstantinosa metabolicresponsesofwillowsalixpurpurealleavestomycorrhizationasrevealedbymassspectrometryand1hnmrspectroscopymetaboliteprofiling
AT chamounrony metabolicresponsesofwillowsalixpurpurealleavestomycorrhizationasrevealedbymassspectrometryand1hnmrspectroscopymetaboliteprofiling
AT jabajisuha metabolicresponsesofwillowsalixpurpurealleavestomycorrhizationasrevealedbymassspectrometryand1hnmrspectroscopymetaboliteprofiling