Cargando…
Multi-Layer Sparse Representation for Weighted LBP-Patches Based Facial Expression Recognition
In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the...
Autores principales: | Jia, Qi, Gao, Xinkai, Guo, He, Luo, Zhongxuan, Wang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435128/ https://www.ncbi.nlm.nih.gov/pubmed/25808772 http://dx.doi.org/10.3390/s150306719 |
Ejemplares similares
-
Facial Expression Recognition with LBP and ORB Features
por: Niu, Ben, et al.
Publicado: (2021) -
A Modified Sparse Representation Method for Facial Expression Recognition
por: Wang, Wei, et al.
Publicado: (2016) -
Facial Expression Recognition Methods in the Wild Based on Fusion Feature of Attention Mechanism and LBP
por: Liao, Jun, et al.
Publicado: (2023) -
Active AU Based Patch Weighting for Facial Expression Recognition
por: Xie, Weicheng, et al.
Publicado: (2017) -
Facial Feature Extraction Using a Symmetric Inline Matrix-LBP Variant for Emotion Recognition
por: Babu, Eaby Kollonoor, et al.
Publicado: (2022)