Cargando…
A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping
With the quick development of RFID technology and the decreasing prices of RFID devices, RFID is becoming widely used in various intelligent services. Especially in the retail application domain, RFID is increasingly adopted to capture the shopping tracks and behavior of in-store customers. To furth...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435189/ https://www.ncbi.nlm.nih.gov/pubmed/25751076 http://dx.doi.org/10.3390/s150305344 |
_version_ | 1782371870869291008 |
---|---|
author | Shen, Bin Zheng, Qiuhua Li, Xingsen Xu, Libo |
author_facet | Shen, Bin Zheng, Qiuhua Li, Xingsen Xu, Libo |
author_sort | Shen, Bin |
collection | PubMed |
description | With the quick development of RFID technology and the decreasing prices of RFID devices, RFID is becoming widely used in various intelligent services. Especially in the retail application domain, RFID is increasingly adopted to capture the shopping tracks and behavior of in-store customers. To further enhance the potential of this promising application, in this paper, we propose a unified framework for RFID-based path analytics, which uses both in-store shopping paths and RFID-based purchasing data to mine actionable navigation patterns. Four modules of this framework are discussed, which are: (1) mapping from the physical space to the cyber space, (2) data preprocessing, (3) pattern mining and (4) knowledge understanding and utilization. In the data preprocessing module, the critical problem of how to capture the mainstream shopping path sequences while wiping out unnecessary redundant and repeated details is addressed in detail. To solve this problem, two types of redundant patterns, i.e., loop repeat pattern and palindrome-contained pattern are recognized and the corresponding processing algorithms are proposed. The experimental results show that the redundant pattern filtering functions are effective and scalable. Overall, this work builds a bridge between indoor positioning and advanced data mining technologies, and provides a feasible way to study customers’ shopping behaviors via multi-source RFID data. |
format | Online Article Text |
id | pubmed-4435189 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-44351892015-05-19 A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping Shen, Bin Zheng, Qiuhua Li, Xingsen Xu, Libo Sensors (Basel) Article With the quick development of RFID technology and the decreasing prices of RFID devices, RFID is becoming widely used in various intelligent services. Especially in the retail application domain, RFID is increasingly adopted to capture the shopping tracks and behavior of in-store customers. To further enhance the potential of this promising application, in this paper, we propose a unified framework for RFID-based path analytics, which uses both in-store shopping paths and RFID-based purchasing data to mine actionable navigation patterns. Four modules of this framework are discussed, which are: (1) mapping from the physical space to the cyber space, (2) data preprocessing, (3) pattern mining and (4) knowledge understanding and utilization. In the data preprocessing module, the critical problem of how to capture the mainstream shopping path sequences while wiping out unnecessary redundant and repeated details is addressed in detail. To solve this problem, two types of redundant patterns, i.e., loop repeat pattern and palindrome-contained pattern are recognized and the corresponding processing algorithms are proposed. The experimental results show that the redundant pattern filtering functions are effective and scalable. Overall, this work builds a bridge between indoor positioning and advanced data mining technologies, and provides a feasible way to study customers’ shopping behaviors via multi-source RFID data. MDPI 2015-03-05 /pmc/articles/PMC4435189/ /pubmed/25751076 http://dx.doi.org/10.3390/s150305344 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shen, Bin Zheng, Qiuhua Li, Xingsen Xu, Libo A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping |
title | A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping |
title_full | A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping |
title_fullStr | A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping |
title_full_unstemmed | A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping |
title_short | A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping |
title_sort | framework for mining actionable navigation patterns from in-store rfid datasets via indoor mapping |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435189/ https://www.ncbi.nlm.nih.gov/pubmed/25751076 http://dx.doi.org/10.3390/s150305344 |
work_keys_str_mv | AT shenbin aframeworkforminingactionablenavigationpatternsfrominstorerfiddatasetsviaindoormapping AT zhengqiuhua aframeworkforminingactionablenavigationpatternsfrominstorerfiddatasetsviaindoormapping AT lixingsen aframeworkforminingactionablenavigationpatternsfrominstorerfiddatasetsviaindoormapping AT xulibo aframeworkforminingactionablenavigationpatternsfrominstorerfiddatasetsviaindoormapping AT shenbin frameworkforminingactionablenavigationpatternsfrominstorerfiddatasetsviaindoormapping AT zhengqiuhua frameworkforminingactionablenavigationpatternsfrominstorerfiddatasetsviaindoormapping AT lixingsen frameworkforminingactionablenavigationpatternsfrominstorerfiddatasetsviaindoormapping AT xulibo frameworkforminingactionablenavigationpatternsfrominstorerfiddatasetsviaindoormapping |