Cargando…

Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na(+) - K(+) Fluxes

Here we describe an experimental design aimed to investigate changes in total cellular levels of Na(+) and K(+) ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na(+) levels increased exponentially with rising alk...

Descripción completa

Detalles Bibliográficos
Autores principales: Pomati, Francesco, Burns, Brendan P., Neilan, Brett A.
Formato: Texto
Lenguaje:English
Publicado: Biological Procedures Online 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC443562/
https://www.ncbi.nlm.nih.gov/pubmed/15243648
http://dx.doi.org/10.1251/bpo82
Descripción
Sumario:Here we describe an experimental design aimed to investigate changes in total cellular levels of Na(+) and K(+) ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na(+) levels increased exponentially with rising alkalinity, with K(+) levels being maximal for optimal growth pH (~8). At standardized pH conditions, the increase in cellular Na(+), as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 μM and veratridine at 100 μM. Both the channel-blockers amiloride (1 mM) and saxitoxin (1 μM), decreased cell-bound Na(+) and K(+) levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na(+)- K(+) fluxes.