Cargando…

Directional cell movement through tissues is controlled by exosome secretion

Directional cell movement through tissues is critical for multiple biological processes and requires maintenance of polarity in the face of complex environmental cues. Here we use intravital imaging to demonstrate that secretion of exosomes from late endosomes is required for directionally persisten...

Descripción completa

Detalles Bibliográficos
Autores principales: Sung, Bong Hwan, Ketova, Tatiana, Hoshino, Daisuke, Zijlstra, Andries, Weaver, Alissa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435734/
https://www.ncbi.nlm.nih.gov/pubmed/25968605
http://dx.doi.org/10.1038/ncomms8164
Descripción
Sumario:Directional cell movement through tissues is critical for multiple biological processes and requires maintenance of polarity in the face of complex environmental cues. Here we use intravital imaging to demonstrate that secretion of exosomes from late endosomes is required for directionally persistent and efficient in vivo movement of cancer cells. Inhibiting exosome secretion or biogenesis leads to defective tumour cell migration associated with increased formation of unstable protrusions and excessive directional switching. In vitro rescue experiments with purified exosomes and matrix coating identify adhesion assembly as a critical exosome function that promotes efficient cell motility. Live-cell imaging reveals that exosome secretion directly precedes and promotes adhesion assembly. Fibronectin is found to be a critical motility-promoting cargo whose sorting into exosomes depends on binding to integrins. We propose that autocrine secretion of exosomes powerfully promotes directionally persistent and effective cell motility by reinforcing otherwise transient polarization states and promoting adhesion assembly.