Cargando…

Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons

Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to...

Descripción completa

Detalles Bibliográficos
Autores principales: Wetmore, Kelly M., Price, Morgan N., Waters, Robert J., Lamson, Jacob S., He, Jennifer, Hoover, Cindi A., Blow, Matthew J., Bristow, James, Butland, Gareth, Arkin, Adam P., Deutschbauer, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436071/
https://www.ncbi.nlm.nih.gov/pubmed/25968644
http://dx.doi.org/10.1128/mBio.00306-15
_version_ 1782372001152761856
author Wetmore, Kelly M.
Price, Morgan N.
Waters, Robert J.
Lamson, Jacob S.
He, Jennifer
Hoover, Cindi A.
Blow, Matthew J.
Bristow, James
Butland, Gareth
Arkin, Adam P.
Deutschbauer, Adam
author_facet Wetmore, Kelly M.
Price, Morgan N.
Waters, Robert J.
Lamson, Jacob S.
He, Jennifer
Hoover, Cindi A.
Blow, Matthew J.
Bristow, James
Butland, Gareth
Arkin, Adam P.
Deutschbauer, Adam
author_sort Wetmore, Kelly M.
collection PubMed
description Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative d-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling.
format Online
Article
Text
id pubmed-4436071
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Society of Microbiology
record_format MEDLINE/PubMed
spelling pubmed-44360712015-05-25 Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons Wetmore, Kelly M. Price, Morgan N. Waters, Robert J. Lamson, Jacob S. He, Jennifer Hoover, Cindi A. Blow, Matthew J. Bristow, James Butland, Gareth Arkin, Adam P. Deutschbauer, Adam mBio Research Article Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative d-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. American Society of Microbiology 2015-05-12 /pmc/articles/PMC4436071/ /pubmed/25968644 http://dx.doi.org/10.1128/mBio.00306-15 Text en Copyright © 2015 Wetmore et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Wetmore, Kelly M.
Price, Morgan N.
Waters, Robert J.
Lamson, Jacob S.
He, Jennifer
Hoover, Cindi A.
Blow, Matthew J.
Bristow, James
Butland, Gareth
Arkin, Adam P.
Deutschbauer, Adam
Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons
title Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons
title_full Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons
title_fullStr Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons
title_full_unstemmed Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons
title_short Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons
title_sort rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436071/
https://www.ncbi.nlm.nih.gov/pubmed/25968644
http://dx.doi.org/10.1128/mBio.00306-15
work_keys_str_mv AT wetmorekellym rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT pricemorgann rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT watersrobertj rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT lamsonjacobs rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT hejennifer rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT hoovercindia rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT blowmatthewj rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT bristowjames rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT butlandgareth rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT arkinadamp rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons
AT deutschbaueradam rapidquantificationofmutantfitnessindiversebacteriabysequencingrandomlybarcodedtransposons